Towards Diverse Non-Player Character behaviour
discovery in multi-agent environments

1% Jan Kirk
The Mcersk Mc-Kinney Mgller Institute
University of Southern Denmark
Odense, Denmark
jakir20@student.sdu.dk

Abstract—This paper introduces a method for developing
diverse Non-Player Character (NPC) behaviour through a multi-
agent genetic algorithm based on Map-Elites. We examine the
outcomes of implementing our system in a test environment, with
a particular emphasis on the diversity of the evolved agents in the
feature space. This research is motivated by how diverse NPCs
are an important factor for improving player experience.

We show how our multi agent map-elite algorithm is capable
of isolating the evolved NPCs in the chosen feature space. Results
showed that variation in agent fitness could be predicted with
40% from agent genomes, when agents played 100 games each.

I. INTRODUCTION

The application of Artificial Intelligence (AI) in games is
a vast field, encompassing numerous aspects within a game
such as generation of content for the game world, like maps,
objects, and music; these aspects could be unchanging, after
initial creation by Al techniques, or also subject to change
over the course of the game, by the use of Al. Content like
the aforementioned are important aspects of a game; in terms
of creating rich and varied player experiences, they could be
classified as environmental aspects of a game.

One of the classical applications of Al in games consists
in controlling Non-Player Characters (NPCs). This is usually
achieved by creating some structure for chaining scripted
behaviours (like a Finite State Machine, as commonly used
in the games industry), or by applying some sort of machine
learning approach.

This paper proposes a method to manufacture NPCs with
diverse fixed behaviours, while maintaining some reasonable
level of performance in achieving the agent’s goals. The
performance could be defined as anything which is desired
within the game, e.g., win, interact with human players as
much as possible, or make varied meaningful conversation.

As a test environment, we developed a simple game en-
vironment where performance is defined as collecting gold,
which is a win-condition. In the game, 200 agents will con-
currently play while being allowed to act both cooperatively
and competitively.

Each NPC is based on a predefined Behaviour Tree (BT),
which can be tweaked by MAP-Elites to express different
behaviours. The NPCs can gather food, weapons, gold, form

979-8-3503-5067-8/24/$31.00 ©2024 IEEE

2" Marco Scirea
SDU Metaverse Lab
University of Southern Denmark
Odense, Denmark
msc@mmumi.sdu.dk

groups, or fight against each other. Since their behaviour is
defined by a genome (a sequence of numbers), a specific NPC
could indeed just have its genome shifted to a slightly different
one, in case variance is desired.

II. BACKGROUND / RELATED WORK
A. Quality-diversity algorithms

Quality-diversity algorithms represent a specialized subset
of evolutionary algorithms that not only aim to find the best
solution but also prioritize maintaining diversity within the
solutions discovered. By exploring a wide range of potential
solutions and identifying a diverse set of high-performing
solutions, quality-diversity algorithms can avoid premature
convergence on a single optimal solution and enhance the
robustness of the solutions obtained [1]. Examples of quality-
diversity algorithms include the Multi-dimensional Archive
of Phenotypic Elites (MAP-Elites) and Novelty Search with
Local Competition [2]. These algorithms have demonstrated
effectiveness in balancing exploration and exploitation, leading
to the discovery of a diverse set of high-quality solutions
across various domains, such as robotics, optimization, and
machine learning [3].

Research applying quality-diversity algorithms to games has
shown significant promise in enhancing the generation of game
content. Quality-diversity algorithms, such as MAP-Elites,
have been utilized to evolve diverse and high-quality solutions
for various aspects of game design, including procedural
content generation and level design [4]. By promoting diversity
in the solutions found, these algorithms have been instrumental
in creating a wide range of game content that covers different
gameplay scenarios and challenges [5]. For instance, quality-
diversity algorithms have been applied to evolve diverse reper-
toires of game elements, such as decks in card games like
Hearthstone, providing insights into game dynamics and aiding
in rebalancing game elements [5]. These algorithms have also
been instrumental in evolving game levels and scenes through
interactive and constrained approaches, allowing for mixed-
initiative design in creating levels typical of computer role-
playing games [6]. By leveraging the principles of quality and
diversity in evolutionary computation, researchers have been
able to address challenges in game content generation, such
as ensuring variety, balance, and player engagement.

B. The Map-Elites Algorithm

The central algorithm for this work is Map-Elites (ME),
developed by Mouret and Clune [7]. ME is a variant of genetic
algorithms (GA). Contrary to most search algorithms, ME
finds multiple high-performing solutions within a multidimen-
sional feature space which the user gets to define; this space is
called the feature space. However, the search is not conducted
in the feature space, but in the space which encompasses all
possible solutions, as defined by the genome of a solution.

III. BENCHMARK ENVIRONMENT

The benchmark environment was designed to present a
range of viable options for the NPCs to develop different
behaviours. It was not developed with the intention of being
played by humans, so it is more akin to a simulation, rather
than a game. However, the long-term hypothesis is that results
from this study could be used in an arbitrary game which
requires NPCs to create diverse agents.

Figure 1 shows the view of the playing-field; blue dots are
NPCs, one or more little spheres above the NPC represents a
group of NPCs, yellow dots are gold, red dots are food, and
salmon coloured squares are weapons.

Fig. 1. The benchmark environment while the simulation is in progress.

In the game, the NPCs can observe their surroundings to
discover the positions of objects of interest:

e Food which will replenish their health by 50 HP (they
start with 100 HP).

o Weapons which will increase their damage output.

e Gold pieces, each with value 1. The amount of gold
collected is the measure of success in the game.

o Opponents (other NPCs) which they can either group
with (allowing for cooperation) or attack (competition).

Food, weapons, and gold are picked up when the agent collides
with it. However, gold can also be obtained indirectly by
killing another NPC, which would result in looting their gold.

The general behaviour of the agents is represented with a
behaviour tree (see Fig. 2) that is tweaked through the Map-
Elites (see section III-A). In short, the main actions that the
agent can execute are:

« Walking randomly, when no object of interest has been

found.
o Walk to an object of interest.

o Form (or join) a group with other agents.

o Fight with another agent or group of agents. Fights
are only resolved through the death of one of the
agents/groups, there is no option to flee a fight.

Sequence
Iea t?:: s r ‘ r
N BV NV NIV N

NPC - walk
Behaviour Tree

ne ‘ ' ound objects,‘
objects,

select object,

go destination,

find random
i destination ‘

Fig. 2. Base behaviour tree.

When in a group, members will share collected food and
gold, but decisions are made by the group leader. Moreover,
weapons will only be assigned to the current leader. The
members take turns being leader, which decides where to
go. When a group participates in a fight, the leader is the
only one actively fighting. If the leader dies during a fight,
a different agent takes its place and continues the combat.
After a successful fight, the leader will change and the group
member with the highes HP will take their place. The game
starts with 200 NPCs equally spaced, in a grid, and ends when
20% is left; on the hardware used for the study, which took
approximately 10 seconds.

A. Genome

To allow ME to find different behaviours we have encoded
some of the parameters of the BT described in the previous
section, which change the priorities of the agent in deciding
which actions to take. We designed a genome consisting of 9
genes, each represented as a floating-point number between
0 and 1: GroupTendency, FoodHigh, WeaponHigh, Op-
pHigh, GoldHigh, FoodLow, WeaponLow, OppLow, and
GoldLow.

Gene 1 represents how likely the agent is to want to join
a group (or have other NPCs join their group). Genes 2 to 5
represent the likelihood of the agent choosing to go towards
either food, weapons, an opponent, or gold when the NPC’s
health is above 50. Genes 6 to 9 represent the same preferences
but when the agent’s health is below 50.

IV. METHODS

The original implementation of ME does not support multi-
agent environments, we propose a hybrid implementation of
ME (II-B) and more standard genetic algorithms to fit the
proposed problem. Our algorithm deviates from standard MEs
by having multiple agents simultaneously play the simulation

while allowing for interactions between the population’s in-
dividuals. When a game is completed, the results are used
to evaluate the agents, obtaining their features, eventually
updating the elite-map, and producing the next generation.
The algorithm is similar to standard evolutionary algorithms in
the selection strategies for creating new individuals (ranking
the current generation and selecting parents through a roulette
wheel method), and crossover/mutation operators.

A. Feature space

In ME methods, the solutions are placed in a feature-space
which is separate from the solution-space in which individuals
are purely ranked by performance (as in traditional evolution-
ary algorithms). We define a three-dimensional feature-space
that describes characteristics of different NPC behaviour in
our simulation:

o GroupTendency was chosen since it was deemed inter-
esting to evolve agents which could both be prone to act
alone or work together in a group.

e SurvivalTime was chosen since it could be interesting to
have agents which would obtain a good score, perhaps by
being reckless and shortlived; or building a good score
over a longer time by being careful by going for food,
weapons, and gold before going for other NPCs. Or by
being in a group.

o TotalDamage was chosen to have agents which would
either obtain a lot of gold through killing, or perhaps
gaining a good amount of gold by direct pick-up.

B. Implementation details

This section describes the general structure of the evolu-
tionary loop and how our multi-agent ME differs from the
vanilla version. At all times 200 agents will be playing. That
number was chosen since that was what the available hardware
could handle. We decided to add a requirement for agents to
be eligible to be placed in the elite-map: individuals must have
played some number of games. Vanilla ME does not include
such a requirement but, given that our environment is very
dynamic, we felt it was important to alleviate the effect of
a “lucky run” by averaging the performance (and features)
of the agents over multiple games. Individuals that have not
yet satisfied the requirement are kept in the population until
the criterion is met. Once the agent has played the required
number of games, i) the features of the agent are determined,
ii) based on the features the appropriate cell in the elites-map
is determined, and iii) if the agent has a higher performance
than the current solution in the cell, it can replace the previous
elite.

The total number of iterations (games) is determined by
how many generations the system is run for:

iterations = generations x minimum_number_of_games

C. Selection strategy

When a new population needs to be generated, we have
chosen to apply a strategy that includes both individuals in
the current population and elites. Since every couple of two

Fitness by colour
top 40 of 159 elites.

0.34

abewed [e10L
ainead -7

ssaul

Fig. 3. Fitness from all features. Top 25%. 120 generations, sample-size 20,
resolution 10, 2400 iterations.

parents will produce two offspring, 100 map-elites and 100
playing-agents is chosen. The parents for the new generation
are chosen as:

o If possible, 50 elites and 50 individuals from the current
population will be used.

o If there are not enough elites (such at the start of the
evolutionary run) extra playing agents will be chosen
from the population as needed.

o Roulette wheel is held in each category, based on rank
by fitness. By using rank instead of actual fitness value,
it is ensured that individuals with very low or very high
fitness do not get an overly high/low chance of being
selected.

o Once the pool of parents has been selected, random cou-
ples (from both categories) will be selected for crossover.

D. Crossover and mutation operators

We have chosen to implement a two-point crossover oper-
ator. Each gene in the new offspring will have a chance of
mutating. The mutation chance is set to 1% to prevent drastic
changes in the population. To encourage that a gene does not
mutate too far from the original, Box Muller Transform [8§]
was used to generate a normalised new gene value around the
original value.

V. RESULTS

This section reports on the results of experiments with running
the system with various number of generations and number of
required games (from now on referred to as sample-size). For
all the experiments the resolution of the feature-space is set
as 10, meaning that the elites can be placed in a 10x10x10
matrix.

The top 25% of obtained elites (with 120 generations and
sample-size 20) is visualised in figure 3. Since group-tendency
is directly encoded [7] there is a good diversity on the x-
feature. Features survival-time and total-damage are indirectly
encoded, and have lower diversity, respectively around 0.4-0.8
and 0.2-0-3.

Fitness by colour,
all 67 elites.

shewed 1oL
a1medd - z

ssaupy

o)
00 gp [

Fig. 4. Fitness from all features, all elites, 100 generations, sample size 100,
resolution 10, 10000 iterations.

Since in a game development situation the developer would
need to implement NPCs based on their genomes, there isn’t
much value in the method if indirectly encoded features
and performance cannot be predicted to a ’good’ degree by
the genome. Then, since there is a lot of randomness in
the prototype environment, we hypothesize that letting each
individual play more iterations will enhance the relationship
between genome and indirect features/performance. To test
this, another simulation was run with 100 generations, sample
size 100, and resolution 10. Figure 4 shows all the developed
elites, which amounts to 67. It can be observed that the range
of survival-time and total-damage has narrowed further down
to approximately 0.5-0.7, and around 0.2.

VI. DISCUSSION
A. Discussion of obtained results

1) 120 generations, sample-size 20: In this simulation 159
elites, and 40 high performing elites were evolved (see section
V and figure 3). The diversity in features group-tendency and
survival-time was good; however, since it is hard for the NPCs
not to get killed since they cannot flee, we hypothesize that
high total-damage is rather based on luck from one game to
another.

2) 10000 iterations, sample-size 100, 100 generations:
This simulation resulted in an even more narrow fotal-damage
diversity, due to the limitations mentioned in section VI-AI.
However, prediction of fitness from genome had signifi-
cantly improved with increased sample-size, to 40%. Features
survival-time and total-damage alone were predicted by 70%
and 9.4%.

B. Strengths and weaknesses of the test environment

Strong sides of the test environment are that the rules are
simple, the NPC decisions are limited to selecting a destina-
tion, based on their genome and the objects they currently
see. A clear limitation is that the rules are too simple for
the environment to resemble a game with human players. As
mentioned, the method developed could be used for any game

which uses NPCs, although there is a challenge in selecting
appropriate features for a particular game.

C. Strengths and weaknesses of multi-agent Map-Elites

The presented method allows to harness Map-Elites’s qual-
ity of developing multiple well performing diverse solutions to
discover multiple agent behaviours simultaneously. Moreover,
it allows the agents to interact with each other as part of the
evolutionary process.

We believe that being able to customise the feature-space
would make the method interesting to game developers since
they would be able to adapt it to their needs. With the addition
of a user-friendly interface to define genome, features, fitness,
and data collection, a developer would be in full control.

VII. CONCLUSIONS

We present a multi-agent Map-Elites algorithm to cultivate
diverse agents within a feature space. The long-term aim is to
establish a framework for producing NPCs for more complex
games that include human players. We developed a multi-agent
test environment; however, after several sessions and numerous
iterations, it was observed that the options available for the
NPCs in the game were too limited. The survival aspect of
the game was found to be overly challenging and random,
hindering the true evolution of diverse behaviour.

Results indicate that around 100 games (sample-size) were
needed to represent each agent with reasonable accuracy in
the elite-map. It was found that 40% of fitness variation,
based on the agent genome, could be predicted. Further
development would be focused on enhancing the prediction,
in turn improving the usability of the product.

In conclusion, while the prototype game requires adjust-
ments to reduce randomness, the successful implementation
of the multi-agent Map-Elites algorithm demonstrates its po-
tential in evolving diverse Non-Player Character behaviours,
paving the way for more engaging and dynamic gaming
experiences.

REFERENCES

[1] J. K. Pugh, L. B. Soros, and K. O. Stanley, “Quality diversity: A new
frontier for evolutionary computation,” Frontiers in Robotics and Al,
vol. 3, p. 40, 2016.

[2] J. Nordmoen, F. Veenstra, K. O. Ellefsen, and K. Glette, “Quality and
diversity in evolutionary modular robotics,” in 2020 IEEE Symposium
Series on Computational Intelligence (SSCI), pp. 2109-2116, IEEE, 2020.

[3] A. Cully and Y. Demiris, “Quality and diversity optimization: A unifying
modular framework,” IEEE Transactions on Evolutionary Computation,
vol. 22, no. 2, pp. 245-259, 2017.

[4] D. Gravina, A. Khalifa, A. Liapis, J. Togelius, and G. N. Yannakakis,
“Procedural content generation through quality diversity,” in 2019 IEEE
Conference on Games (CoG), pp. 1-8, IEEE, 2019.

[5S] M. C. Fontaine, S. Lee, L. B. Soros, F. de Mesentier Silva, J. Togelius,
and A. K. Hoover, “Mapping hearthstone deck spaces through map-elites
with sliding boundaries,” in Proceedings of The Genetic and Evolutionary
Computation Conference, pp. 161-169, 2019.

[6] A. Alvarez, S. Dahlskog, J. Font, and J. Togelius, “Empowering quality
diversity in dungeon design with interactive constrained map-elites,” in
2019 IEEE Conference on Games (CoG), pp. 1-8, IEEE, 2019.

[7] J.-B. Mouret and J. Clune, “Illuminating search spaces by mapping elites,”
arXiv preprint arXiv:1504.04909, 2015.

[8] G.E. Box and M. E. Muller, “A note on the generation of random normal
deviates,” The annals of mathematical statistics, vol. 29, no. 2, pp. 610—
611, 1958.

