
Adaptive Agents in 1v1 Snake Game with Dynamic
Environment

1st Hampus Fink Gärdström
The Mærsk Mc-Kinney Møller Institute

University of Southern Denmark
Odense, Denmark

hamp@mmmi.sdu.dk

2nd Henrik Schwarz
The Mærsk Mc-Kinney Møller Institute

University of Southern Denmark
Odense, Denmark

hschw17@student.sdu.dk

3rd Marco Scirea
SDU Metaverse Lab

University of Southern Denmark
Odense, Denmark
msc@mmmi.sdu.dk

Abstract—This paper delves into the adaptability of Proxi-
mal Policy Optimization (PPO)-trained agents within dynamic
environments. Typically, an agent is trained within a specific
environment, learning to maximise reward acquisition and to nav-
igate it effectively. However, alterations to this environment can
lead to performance deficiencies. Existing research does not fully
elucidate how the training of agents influences their adaptability
in different environments and which parameters significantly
impact this. This study aims to fill this gap, contributing to the
creation of more versatile intelligent agents.

The objective of this study is to explore how training agents in
various environments affects their adaptability when introduced
to unfamiliar environments. To this end, 36 models were trained
using 36 different configurations to play a one-versus-one (1v1)
Snake game. These models were subsequently compared against
each configuration to measure their adaptability.

The results reveal that map size substantially affect the
adaptability of agents in different environments. Interestingly,
the results showed that the most adaptive agents were not those
trained on the most expansive and complex environment, but
rather the simplest.

Index Terms—snake game, multi-agent, reinforcement learn-
ing, adaptive agents, proximal policy optimization

I. INTRODUCTION

The intersection of Reinforcement Learning (RL) and Multi-
Agent Systems (MAS) in gaming presents a compelling
research area. This field primarily explores the training of
agents through self-play, relying solely on the game state
and potential actions. Notable achievements include Google
DeepMind’s AlphaGO Zero algorithm [1] which mastered the
game of Go within 24 hours, and AlphaStar which plays
Starcraft 2 at grandmaster level [2].

Recently, algorithms such as Q-learning and Proximal Pol-
icy Optimization (PPO) have gained popularity. While existing
research examines the performance of reinforcement-trained
agents in static environments using Q-learning algorithms,
this paper shifts the focus to the PPO learning algorithm [3].
Specifically, we investigate the adaptability of trained models
in dynamic environments.

This study employs a 1v1 Snake game as a sandbox for
this investigation inspired by and built upon the international
BattleSnake1 competition [4], where AI agents compete in a

1https://battlesnake.com

game of four-players Snake. The traditional Snake game, a
single-player game developed by Taneli Armanto and launched
as pre-installed software on the Nokia 6110 mobile phone in
1998, involves the player guiding a snake to gather apples in an
attempt to achieve the highest possible score. The introduction
of multiple snakes adds complexity to the domain. For this
initial study, we limit the game to 1v1, although the framework
supports more players.

The objective of this study is to examine the effects of
training agents in a specific environment and compare their
performance in a different environment.

Our research seeks to contribute to the broader under-
standing of agent generalised learning. This knowledge could
potentially aid the development of more robust and versatile
intelligent agents capable of transitioning between different
environments and tasks, thereby enhancing their applicability
and use.

II. METHOD

In this section the implementation of the game, the feature
design and the reward structure of the agent is detailed. Ad-
ditionally, the details on how and which models were trained
are described along with how the adaptability experiment was
performed.

A. Snake implementation

The game was implemented as a multi-agent PettingZoo [5]
environment for 2 agents. In algorithm 1 pseudo-code for the
step function of the game is shown. The function is run at each
update of the game. It takes the actions of each snake as input,
and for each snake derives the next position based on their
respective action. Depending on whether certain conditions
are met the snake is rewarded or terminated. If the snake
collides with an obstacle or goes out of the map bounds it
is terminated and negatively rewarded. If it discovers food it
is rewarded, if not it is instead negatively rewarded and loses
its tail. Depending on whether the snake got closer to food it
is also rewarded.

Finally, the next position is set as the new head of the snake.
Once each snake is processed, walls and food are added based
on a 20% chance and given that the max limit of each item has
not been reached inside the map. The placement is random. In979-8-3503-5067-8/24/$31.00 ©2024 IEEE

https://battlesnake.com

case the max limit of walls has been reached then a random
wall is removed and a new wall is placed in a random location.

Terminated agents do not receive further actions and are
therefore no longer updated. The game lasts until both agents
have been terminated or a set number of max game iterations
has been reached. In order to limit the runtime of the game and
prevent the model running each episode too long, a limit of
5.000 step iterations was set for each game run, and if it was
exceeded the game will terminate all agents thereby ending
the game.

Algorithm 1 Step Function
1: function STEP(actions)
2: if not actions then
3: return {}, {}, {}
4: end if
5: rewards← {agent | agent ∈ agents : 0}
6: observations ← {agent | agent ∈ agents :

getObservation(agent)}
7: terminations← {agent | agent ∈ agents : False}
8: for each agent ∈ agents do
9: snake head← getHead(agent)

10: next pos← move(snake head, actions[agent])
11: if posInvalidOrBlocked(next pos) then
12: killAgent(agent)
13: rewards[agent]← −29
14: terminations[agent]← True
15: continue
16: end if
17: if posIsFood(next pos) then
18: rewards[agent]← 27
19: else
20: removeTail(agent)
21: rewards[agent]← −0.3
22: end if
23: if agentGotCloserToFood(next pos, agent) then
24: rewards[agent]← 0.3
25: end if
26: addHead(next pos, agent)
27: end for
28: addFoodRandomly()
29: addWallsRandomly()
30: return rewards, observations, terminations
31: end function

B. Features Design

The feature design was inspired by the approach taken by
Yuhang et al. [6]. The state input for the learning algorithm
is the same where the 16 directions were chosen and the
same five observation parameters were chosen due to their
demonstrated adequacy, however they were adjusted slightly
after testing to perform better in this implementation of snake.

The first two parameters visibility of the snake body and
food are boolean values (1 and 0) that describes whether a
part of the snake’s body or a piece of fruit can be found

in the square. This provides the algorithm with immediate
information of the surroundings of the snake.

The next three parameters provide the snake with a represen-
tation of the global state of the game without having to provide
the whole board. The distance to body uses the Manhattan
Distance2 to calculate the distance to the nearest body part
and should help the algorithm with understanding confinement
and optimizing for having available state. Similarly, distance
to the nearest food and distance to the nearest wall, are both
also defined using Manhattan distance. These parameters are
designed to optimize finding food and avoiding collision with
walls.

The action space for the game is defined as an integer value
from 0 to 3 that are defined as up(0), down(1), left(2) and
right(3).

C. Reward Structure

Rewards were based on conditions described by Yuhan
[6] where the initial values were the same and subsequently
adjusted based on preliminary testing. The preliminary testing
adjustments resulted in setting the reward for obtaining food
at 27, a penalty of −0.3 for in-action i.e., not eating food,
−29 for a death and 0.3 reward for moving closer to food.

D. Model training

A total of 36 game scenarios, or game parameter combi-
nations, were devised from a range of parameters listed in
table I, where all permutations that change the environment
were included. The game parameters were selected as they
were envisioned to significantly impact the behavior and need
of the agent and were therefore suitable for the experiment
on adaptability. The implementation of PPO from Stable
Baselines3 [7] using the MlpPolicy was used to train the
models. The hyperparameters underwent brief testing and
changes were made to the step size and batch size to speed up
training time, the used hyperparameters are listed in table II;
the entries in bold are the ones that differ from the default
configuration. All models were trained to 25 million total
timesteps using a CPU device. The total amount of timesteps
was selected, as during preliminary testing, it appeared to
provide adequate results and it made it possible to train all
36 models within a reasonable time frame.

TABLE I
GAME SETTINGS

Parameter Variables

Map Size 5, 11, 19
Food Total Max 2, 10, 15
Walls Enabled False, True
Walls Max 2, 10, 15

2Manhattan Distance Wikipedia

https://en.wikipedia.org/wiki/Taxicab_geometry

TABLE II
HYPERPARAMETERS

Hyperparameter Value Hyperparameter Value

Policy ’MlpPolicy’ Batch Size 8000
Learning Rate 0.0003 GAE Lambda 0.95
n steps 32000 Clip Range 0.2
n epochs 10 Gamma 0.99
Normalize Advantage True Entropy Coefficient 0.0
VF Coefficient 0.5 Max Grad Norm 0.5
Use SDE False SDE Sample Freq -1
Rollout Buffer Class None Rollout Buffer Kwargs None
Target KL None Stats Window Size 100
Tensorboard Log None Policy Kwargs None
Verbose 0 Seed None
Device ’cpu’ init setup model True

E. Experiment

The experiment was executed by running each model
against every combination of game parameter configurations
listed in table III. This totalled 1296 (36 models × 36 configu-
rations) different model combination pairings, and each pairing
was evaluated for 500 episodes running through an entire
game, from which average and max metrics were collected.
These values were collected into a CSV-file for processing.

The metrics collected were the average of the total reward,
snake size, food eaten and moves taken for every agent
across all. Moreover, the maximum of these values across all
episodes of an evaluated model × configuration pairing was
also recorded.

III. RESULTS

The results of the experiment produced multiple graphs for
analysis.

Figure 1 displays the average performance of each model
across all game configurations. Every metric for the models
has been averaged over all game parameter configurations
it has been evaluated against. The data shows that certain
models perform consistently worse or better than others across
all game parameter configurations, specifically models trained
on combinations with larger maps sizes compared to smaller.
Models 9 to 13, 21 to 24 and 33 to 36, all seem to perform
under the other models that have a smaller map size. Model
11 with a max wall size of 10 also performs consistently better
better than model 10 and 12 with max walls parameter 5 and
15. When comparing other models that also have a max wall
parameter of 10 and their neighboring models with parameters
of 5 and 10 the same cannot be found.

The average value charts seem to be more consistent with
less variance where the with max value have a bigger variance
in value.

IV. CONCLUSION

This study offers initial insights into the impact of training
environments on the adaptability of agents, particularly those
environments that may impede learning.

TABLE III
PARAMETER CONFIGURATIONS

Id Food Max Map Size Walls Enabled Max Walls

1 2 5 False 0
2 2 5 True 2
3 2 5 True 10
4 2 5 True 15
5 2 11 False 0
6 2 11 True 2
7 2 11 True 10
8 2 11 True 15
9 2 19 False 0
10 2 19 True 2
11 2 19 True 10
12 2 19 True 15
13 10 5 False 0
14 10 5 True 2
15 10 5 True 10
16 10 5 True 15
17 10 11 False 0
18 10 11 True 2
19 10 11 True 10
20 10 11 True 15
21 10 19 False 0
22 10 19 True 2
23 10 19 True 10
24 10 19 True 15
25 15 5 False 0
26 15 5 True 2
27 15 5 True 10
28 15 5 True 15
29 15 11 False 0
30 15 11 True 2
31 15 11 True 10
32 15 11 True 15
33 15 19 False 0
34 15 19 True 2
35 15 19 True 10
36 15 19 True 15

To thoroughly investigate the impact of varying game pa-
rameters on adaptability, we devised 36 different configura-
tions for the 1v1 Snake game and trained a model on each of
these environments. These models were subsequently evalu-
ated across different game parameter configurations, yielding
metrics that demonstrate each model’s performance and adapt-
ability.

We observe that map size was the most significant factor
affecting both performance and adaptability of agents. Larger
map sizes resulted in less proficient agents and posed greater
adaptation challenges for agents not trained in such environ-
ments. This seems aligned with the results from Soemers et
al. [8], and might be explained by how smaller game take
less time to complete, so the model gets more training steps.
The maximum amount of food and the presence of walls did
not significantly impact training or adaptability. However, the
existence of walls negatively affected both adaptability and
training of agents.

The best performing agents were those trained in a small
map size with no walls present. However, the most adaptable
agents were the ones trained in small or medium map sizes
with walls enabled.

In conclusion, this paper presents an initial contribution by

Fig. 1. Bar charts of all the measured metrics with the average value over all runs across all game parameter configurations for each model.

providing a comprehensive analysis of agent adaptability in
dynamic environments.

REFERENCES

[1] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, et al., “Mastering chess
and shogi by self-play with a general reinforcement learning algorithm,”
arXiv preprint arXiv:1712.01815, 2017.

[2] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik,
J. Chung, D. H. Choi, R. Powell, T. Ewalds, P. Georgiev, et al., “Grand-
master level in starcraft ii using multi-agent reinforcement learning,”
Nature, vol. 575, no. 7782, pp. 350–354, 2019.

[3] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Prox-
imal policy optimization algorithms,” arXiv preprint arXiv:1707.06347,
2017.

[4] J. Chung, A. Luo, X. Raffin, and S. Perry, “Battlesnake challenge: A
multi-agent reinforcement learning playground with human-in-the-loop,”
arXiv preprint arXiv:2007.10504, 2020.

[5] J. Terry, B. Black, N. Grammel, M. Jayakumar, A. Hari, R. Sullivan,
L. S. Santos, C. Dieffendahl, C. Horsch, R. Perez-Vicente, et al.,
“Pettingzoo: Gym for multi-agent reinforcement learning,” Advances in
Neural Information Processing Systems, vol. 34, pp. 15032–15043, 2021.

[6] P. Yuhang, S. Yiqi, M. Qianli, G. Bowen, D. Junyi, and T. Zijun, “Playing
the Snake Game with Reinforcement Learning,” Cambridge Explorations
in Arts and Sciences, vol. 1, July 2023.

[7] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dor-
mann, “Stable-baselines3: Reliable reinforcement learning implementa-
tions,” Journal of Machine Learning Research, vol. 22, no. 268, pp. 1–8,
2021.

[8] D. J. Soemers, V. Mella, É. Piette, M. Stephenson, C. Browne, and O. Tey-
taud, “Towards a general transfer approach for policy-value networks,”
Transactions on Machine Learning Research, 2023.

	Introduction
	Method
	Snake implementation
	Features Design
	Reward Structure
	Model training
	Experiment

	Results
	Conclusion
	References

