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ABSTRACT
�is paper describes a system for generating low resolution 3D
models that can be “printed” through plastic beads. �e �nal ob-
jective is creating a system to facilitate Computational �inking
education for primary school pupils.
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1 INTRODUCTION
Computational �inking is increasingly present in Denmark pri-
mary schools, and in some courses introduction to programming is
coupled with robotics, to make it more concrete and tangible for the
pupils. Virtual and mixed reality are also o�en experimented with,
to engage learners and support more intuitive interaction with 3D
worlds and artifacts. �is work looks at constructionist (Papert [1])
and a�empts to combine generation of 3D artifacts with simple and
inexpensive forms of 3D printing.

�e user scenario we envision is for pupils in class (or in a
Danish a�ernoon club) to created a pixel-art image, then choose
a procedural generation agent (from a pale�e) and obtain a 3D
shape. �e shape is exported to an interactive 3D environment to be
explored, for example Minecra� or similar sandbox games. �e 3D
exploration program also exports tomographic images (“horizontal
slices”) of each shape that pupils can use as plastic bead templates;
in this way even complex 3D artifacts can be manually recreated
as physical objects. Plastic beads are usually placed on a pinboard,
then melted into a single �at plastic object via a clothes iron; to
create a 3D shape the process will have to be repeated for each
horizontal slice. We see this as a low-resolution, inexpensive kind
of 3D printing (Figure 2).

We expect that the aesthetic nature of the generation process
should provide a more gender-neutral experience than is usually
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found with primary school programming courses; the activities
described here are closer to design and tinkering with plastic beads
interests a wider range of pupils than scienti�c or mathematical-
related activities. In the future we would like to connect our proce-
dural generator with an Arduino/LEGO machine capable of actually
placing the beads on the board by itself, making the low-resolution
3D printing at least semi-automatic.

In our scenario Computational �inking is supported by the fact
that the procedural generation agents can be used as functions,
composed together to create more complex behaviors. Moreover,
in the next iteration of our prototype we will implement a GUI to
breed new agents starting from the initial population, and a simple
rule-based language to specify the behavior of agents. Pupils will
then have access to both an organic and a programming way to
create agents.

2 THE PROTOTYPE
A prototype has been developed to generate shapes to be printed
using the plastic beads1. �e system implements a deterministic
algorithm that takes inspiration from the Diamond-Square algo-
rithm [3] and Cellular Automata (CA) [4]. While this paper does not
have the scope to properly describe these two methods, we think
it’s important to at least describe their basic ideas. Diamond-Square
is an algorithm to create 2D fractals, if the reader is interested in
learning more about the algorithm’s history we suggest reading
Fisher et al. [2].

CA is a discrete model (generally) applied to a 2D grid of cells,
each of which can represent a �nite number of states (o�en on/o�).
�e grid is initialized with some values (time t = 0), a�er that each
subsequent time-step some rules are applied to decide the state of
each cell based on its neighbors’ state. CAs are commonly known
to create, as outlined by Wolfram [4], four classes of behavior: (i)
pa�erns that stabilize into homogeneity, (ii) pa�erns which evolve
into stable or oscillating structures, (iii) pa�erns that evolve in
chaotic fashion, and (iv) pa�erns that become extremely long and
complex.

Our algorithm takes inspiration from these two techniques by
implementing a 3D version of the Diamond-Square algorithm and
by substituting the averaging of corners with CA-like rules. �e
steps of the algorithm are:

(1) Initialize the 3D matrix used in the generation, as with the
classical Diamond-Square, the sides of the cube must be
2n + 1.

1Download the Windows build at h�p://msci.itu.dk/Pearler.zip
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Figure 1: Two examples of generated structures based on a cube of side 33 and a horizontal slice.

Figure 2: A physical model of a generated structure.

(2) Perform the �rst Octahedron step (Figure 3a): this corre-
sponds to the diamond step, we calculate the midpoint
of the cube, which splits it in 6 half-octahedrons (regular
4-sided base pyramid).

(3) Perform the second Octahedron step (Figure 3b): we calcu-
late the midpoints of the previously generated octahedrons,
these points fall in the center of the faces of the cube(s).
�is step is not enough to go back to cubes, since we are
still missing the midpoints lying on the edges of the cube.
Still by now possessing the faces midpoints we can see
how now a set of 16 octahedrons can be constructed on all
of the cube’s edges, which leads to. . .

(4) �e �nal Cube step (Figure 3c), for each previously created
octahedron, we calculate its midpoint. �is way we obtain
all the midpoints of the cube’s edges and �nally we have
split each of the original cubes into 4 new cubes with side
siden = siden−1/2.

�e CA inspired part comes into play whenever we have to
calculate the value of the midpoints of a polyhedron based on the
its vertices. In this �rst prototype, the rules are generated randomly,
but in the future the user will be able to in�uence them either
directly (through an editor) or indirectly (e.g. through a genetic

(a) (b) (c)

Figure 3: In (a) you can observe the construction of octahe-
drons on a face. Once the midpoint (in red) is calculated,
thenwe can construct the edge octahedrons (b). Finally once
we have the midpoint of the edge octahedron we have split
the original cube in eight (c).

recombination of two set of rules). �e system currently supports
three states: empty, cyan bead, and magenta bead.

An important di�erence with the classic implementation of
Diamond-Square is that we decided to execute the algorithm start-
ing from a speci�c side of the cube. �is choice is motivated by our
intention of giving the user the option to either generate or provide
a starting image 2D image (placed as the bo�om level of the cube)
as a “seed” for the generative algorithm.

A �nal step we should discuss is the introduction of a post-
processing “�lter”. �is �lter has been introduced to increase the
connectivity of the generated structures and limit “disconnected
elements”. With the �nal objective of creating printable 3D models
(Figure 2), it is important that the generated structure can be con-
structed in practice and that it has a reasonable structural integrity.
�is �lter works in the same way as a cellular automaton, with
these simple rule: if there are more than 2 neighbors and the current
cell is empty, �ll in the cell using onthe same rules used by the 3D
Diamond-Square.

3 CONCLUSIONS
While the system described is still in very early stages, and is
lacking in much of the interactivity necessary for pupils to really
engage with it, we believe the prototype supports our scenario
where a customizable algorithm may be used to generate interesting
physical 3D models, and �nally export a template to build them
with plastic beads. One of the key features of the algorithm we
described is that, while not being particularly novel, it supports
a high degree in customization (through the CA rules) while also
being able to create diverse and interesting shapes. Finally, some
issues remain with creating structures that render properly in the
physical medium, which would require additional study. Future
works involves iterative co-design of the complete system in Danish
schools and a�ernoon school-clubs, using focus groups.
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