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Abstract This paper describes the METACOMPOSE music generator, a composi-
tional, extensible framework for affective music composition. In this context ’af-
fective’ refers to the music generator’s ability to express emotional information.
The main purpose of METACOMPOSE is to create music in real-time that can ex-
press different mood-states, which we achieve through a unique combination of
a graph traversal-based chord sequence generator, a search-based melody genera-
tor, a pattern-based accompaniment generator, and a theory for mood expression.
Melody generation uses a novel evolutionary technique combining FI-2POP with
multi-objective optimization. This allows us to explore a Pareto front of diverse so-
lutions that are creatively equivalent under the terms of a multi-criteria objective
function. Two quantitative user studies were performed to evaluate the system:
one focusing on the music generation technique, and the other that explores va-
lence expression, via the introduction of dissonances. The results of these studies
demonstrate (i) that each part of the generation system improves the perceived
quality of the music produced, and (ii) how valence expression via dissonance
produces the perceived affective state. This system, which can reliably generate
affect-expressive music, can subsequently be integrated in any kind of interactive
application (e.g. games) to create an adaptive and dynamic soundtrack.

Keywords Evolutionary computing, genetic algorithm, music generation,
affective music, creative computing
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1 Introduction

The are many reasons to build computer generated music systems, including adapt-
ing to a dynamic environment, performing concurrently with a human player, re-
flecting upon music composition practice, and others [70]. Music has the power
to evoke moods and emotions — even music generated algorithmically [47]. Thus
music is able to enhance the experience of related media. In some cases the main
purpose of a music generation algorithm is to evoke a particular mood. This is
true for generators that form part of interactive systems, such as those supporting
computer games. In these systems, a common goal of music generation is to elicit a
particular mood that dynamically suits the current state of the game-play. Music
generation for computer games can be seen as an instance of the experience-driven
procedural content generation framework (EDPCG) [96], where the game adapta-
tion mechanism generates music with a particular mood or ‘affect expression’ in
response to player actions. The affective music generation system described in this
paper is called METACOMPOSE. The goal of this research is to use METACOMPOSE
for the synthesis of video-game music accompaniment.

Computer games have properties that make them particular interesting and
challenging for this style of music generation: unlike traditional sequential media,
such as novels or movies, events unfold in response to player input rather than a
sequential and linear narrative. Therefore, a music composer for such an interactive
environment needs to create music that is dynamic, while also holding the listeners’
interest, and avoiding exactly repeating the piece, while maintaining a relationship
to what has been heard before. This applies to a wide range of games although not
all; e.g. rhythm games such as Guitar Hero make use of semi-static music around
which the game-play is constructed [64[3].

This type of system is not limited to computer games; it can also be applied
to any type of interactive or dynamic media: for example, adaptive (mood-based)
music generation could be of interest for pervasive music [69,[48[43][85], interactive
artworks [31], or in the domain of ambient computing [20].

The purpose of METACOMPOSE is to produce music used as background in an
interactive/dynamic experience. As such, it does not have to be as complicated
and structured as, for example, a classical piece of music. METACOMPOSE has
rather been designed to create small, loopable compositions with the focus on
dynamically changing the music’s affective expression. The affective moods are
directed by an interactive application (e.g. a game) and the system has to be able
to change between expressing moods fast enough to enable real-time interaction
between the user, the game-play and the music. The system described here builds
on experience with several earlier prototypes [81182] which experimented with
affective expression using simpler musical structures.
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This paper extends a previously published conference paper [84] that describes
the core parts of the music generator. The additional contributions in this extended
paper include:

— Explanation of the affective expression layer (theory and implementation);

— Preliminary evaluation of the dimension of affect expression through disso-
nances;

— Description of the system in a greater detail, which we believe should be enough
to reproduce this work.

The paper is structured as follows: Section 4| provides a concise high-level
overview of the system’s modules and how they relate. Section [5| describes the
component-based framework for the generation of music abstractions, Section [f]
specifies the details of the real-time music creation via affective expressive im-
provisation, and Section [7| describes the archive for storing music abstractions.
In Section [8] the results of an earlier evaluation study are presented; these in-
vestigate the perceived quality of the music generated. Finally, in Section [J the
results of a second user study are presented, these investigate the expression of
positive/negative mood through the introduction of dissonances.

2 Background
2.1 Music Generation and Games

Procedural generation of music is a field that has received much attention in the
last decade [65]. The approaches are diverse and range from creating simple sound
effects, to avoiding repetition when playing human-authored music, to creating
more complex harmonic and melodic structures [25126][19118[46]2]. Wooller [94] di-
vides approaches to procedural music generation into two categories, namely trans-
formational and generative algorithms. Our music generator, METACOMPOSE, falls
in the latter category since it creates music without having any predefined audio
clips to modify or recombine.

Transformational algorithms act upon an already prepared structure, for ex-
ample, by having music recorded in layers that can be added or removed at a
specific time to change the feel of the music. Note that this is only an example
and there are a many other transformational approaches [1[8], however a complete
study of these is beyond the scope of this paper.

Generative algorithms instead create the musical structure themselves; this
demands a higher degree of complexity in ensuring the music remains consistent,
especially when connecting the music to game events. Such an approach requires
more compute-power, as the music-content has to be created dynamically and on
the fly. An example of this approach can be found in the game Spore: the music gen-
erator was created by Brian Eno with the Pure Data programming language [73],
in the form of many small samples that recombine to create the soundtrack in
real-time.

In this work, we adopt the latter approach, in particular focusing on generative
procedural music composition in games for emotional expression. While the topics
of affect [9], semiotics [30] and mood-tagging [58] are also interesting and signifi-
cant, the focus of our system is real-time generation of background music able to
express moods.
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Many projects focus on expressing one (or more) affective states: an example is
described by Robertson [75], where a music generator is developed to express fear.
There are parallels between that work and our approach, for example musical data
is represented via an abstraction (in their case via the CHARM representation |86
93]), yet we claim our system has a higher affective expressiveness since it aims to
express multiple moods in music. A more extensive example of a generative music
system targeted at expressing particular emotions is described by Monteith [67]
using Markov models, n-grams and statistical distributions sourced from a train-
ing corpus of music. Chan and Ventura’s work [I7], much like ours, focuses on
expressing moods; yet their approach relies on changing the harmonization of a
predefined melody, while ours generates the complete piece.

Evolutionary computation (EC) has a multitude of applications (see this recent
review of the field [27]); while EC approaches have many features, we believe that
the one that makes them particularly well-suited for creative tasks is that they are
not focused on a single solution. Another aspect is that ECs are non-deterministic,
if the problem is complex enough, ECs find different solutions based on the same
initial conditions. There are many examples of evolutionary algorithmic (EA) ap-
proaches to generating music, two notable examples are the methods to evolve
piano pieces by Loughran et al. [59] and Dahlstedt [20], although many others can
be found in the Evolutionary Computer Music book [66]. Other examples of real-
time music generation can be found in patents: two examples are a system that
allows the user to play a solo over some generative music [74] and another that
creates complete concert pieces in real-time [62]. An interesting parallel between
the second system [62] and ours is the incorporation of a measure of “distance”
between music clips in order to reduce repetition. Still, neither of the patented
systems explicitly addresses affective expression.

As the final objective, our generator is designed to be employed to create
computer game music. It is therefore important to mention the work by Living-
stone [58], which defines a dynamic music environment where music tracks adjust
in real-time to the emotions of the game character (or game state). While this
work is interesting, it is limited by the usage of predefined music tracks for af-
fective expression. Finally, another notable project in affective expressive music
in games is Mezzo [12]: a system that composes neo-Romantic game soundtracks
in real-time and creates music that adapts to emotional states of the character,
mainly through the manipulation of leitmotifs.

2.2 Emotions and moods

Emotions have been extensively studied within psychology, although their nature
(and what constitutes the basic set of emotions) varies widely. Numerous models
of emotion have been developed since the seminal studies of the early 20th cen-
tury [BIL[79], arguably one of the most influential is the theory of basic or discrete
emotions devised by Ekman [29/28[89]. The theory of basic emotions posits that
all affective experiences derive from a core set of basic emotions which are distinct
and independent. An alternate approach has been the development of dimensional
models of affect, which posit that all emotions derive from a combination of two or
more underlying psychological “dimensions [72}[80,092]. Lazarus argues that “emo-
tion is often associated and considered reciprocally influential with mood, tem-
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perament, personality, disposition, and motivation” [53]. Therefore the approach
presented in this work aims to produce scores with an identifiable mood, and in
so doing, induce an emotional response from the listener.

Affect is generally considered to be the experience of feeling or emotion. Brewin [11]
states that affect is post-cognitive; namely emotions arise only after an amount
of cognitive processing has been accomplished. With this assumption in mind,
every affective reaction (e.g., pleasure, displeasure, liking, disliking) results from
“a prior cognitive process that makes a variety of content discriminations and
identifies features, examines them to find value, and weights them according to
their contributions” [11]. Another view is that affect can be both pre- and post-
cognitive, notably [55]; in this theory thoughts are created by an initial emotional
response that in turn leads to an induced affect.

Moods are affective states. However, while an emotion generally has a specific
object of focus, a mood tends to be more unfocused and diffuse [60]. Batson [6]
posits that mood “involves tone and intensity and a structured set of beliefs about
general expectations of a future experience of pleasure or pain, or of positive or
negative affect in the future”. Another important difference between emotions and
moods is that moods, being diffuse and unfocused, may last longer [7].

In this paper, we focus on mood instead of emotion, for we expect that in games
— where the player listens to the background music for a longer time — moods are
more likely to be a determinant in player experience. In addition, they are easier
for game designers to integrate, since they represent longer-duration sentiments,
more suited to segments of game-play.

2.3 Moods in Music

Music is a powerful medium for affecting moods and this has been attested through-
out history by poets, playwrights, composers, and researchers. Already Butler, in
1973, provided a bibliography of almost 900 publications in the 19th century that
relate to the study of music psychology [14]. Unsurprisingly, the concept of mood
expression and manipulation has been of great interest in the field of marketing;
Bruner compiled an extensive, if now somehow dated, review of studies on music
moods in connection to marketing [I3]. It is important to note that there is dis-
agreement about the kind of emotional responses evoked in the listener, and the
alternative positions being argued that these are: i) “real” emotions, ii) a separate
class of “aesthetic” emotions, or iii) moods [47]. We do not go in detail on this
issue as the scope of this paper is limited to expressed — and not evoked — affective
content.

The set of adjectives that can describe the mood of music and an emotional
response to it is immense and there is no accepted standard vocabulary. For ex-
ample, in the work of Katayose [44], the emotional adjective set includes Gloomy,
Serious, Pathetic and Urbane. Other ontologies propose multiple mood clusters:
eight in the case of Hevner [37] and ten in the case of Farnsworth [32]. More-
over, All Music Guid(ﬂ, a human-annotated music information database, uses an
even larger descriptive approach with a total of 179 mood labels (not mutually
exclusive).

1 http://www.allmusic.com
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Fig. 1: The Valence-Arousal space, labeled by Russell’s [(7] direct circular projec-
tion of adjectives.

Russell [77] proposed a model of affect based on two bipolar dimensions:
pleasant-unpleasant and arousal-sleepy, theorizing that each affect word can be
mapped into a bi-dimensional space (Figure. Thayer [88] applied Russell’s model
to music using the dimensions of wvalence and stress; although the names of the
dimensions are different from Russell’s, their meaning is identical. Also, we find
different terms among different authors [9580] for the same moods. We use the
terms valence and arousal, as they are the most commonly used in affective com-
puting research. In this way, affect in music can be divided into quadrants based
on the dimensions of valence and arousal: Anzious/Frantic (Low Valence, High
Arousal), Depression (Low Valence, Low Arousal), Contentment (High Valence,
Low Arousal) and FEzuberance (High Valence, High Arousal). These quadrants
have the advantage of being explicit and discriminate; also they are the basic
music-induced emotions described in [49/56]. The model also views the axis as a
continuous feature space, allowing for a theoretically unlimited combination of the
two axis’ expression. We adopted Thayer’s approach as we believe its character-
istics present more interesting computational applications (namely a continuous
approach instead of a categorical one) and follow Russell’s model of affect, still
one of the most accepted in psychology.

Many attempts have been made to link emotions with specific aspects of music
(tempo, mode, loudness, pitch, etc.). Hevner, in a classic series of studies, ex-
plored the effect of changes in mode, tempo, and pitch. Tempo and mode seem
to be the strongest determinants of perceived emotion, yet the study had a flaw
in the wording, making it unclear if the participants were annotating perceived or
expressed affect [36,37,38]. Many more studies have been conducted since then,
mainly exploring modes and tempo [50]. Far less explored are the associations
with musical dimensions such as loudness, timbre [40] and pitch height [35] (for
a review see [33]). A relatively unexplored area concerns the interplay of these
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dimensions, which are liable to be complex and somewhat idiosyncratic. Schel-
lenberg conducted one such study, specifically on the interaction between rhythm
and pitch [78]. Our mood expression theory (section is based on the results
of some of these previous studies. We also expect to find some interesting inter-
play between the various dimensions, which may shed some light in how features
interact to convey affect.

In previous work, we built on these theories to evaluate affective expression in
music through a crowd-sourced quantitative experiment: participants were asked
to evaluate the affective expression perceived in the music composed through free-
form answers [83]. Subsequently, words are stemmed (to group all the variations
of similar words) and positioned in the bi-dimensional affective space through a
best-localized criterion: the closer the words describing a part of the space are
clustered, the more descriptive they are considered to be.

3 Methods
3.1 Multi-Objective Optimization

Multi-Objective Optimization (MOO) is defined as the process of simultaneously
optimizing multiple objective functions. In most multi-objective optimization prob-
lems, there is no single solution that simultaneously optimizes every objective. In
this case, the objective functions are said to be partially conflicting, and there ex-
ists, a number (possibly infinite) of Pareto optimal solutions. To understand what
makes a solution better than another the concept of Pareto dominance is intro-
duced: it is a binary relation between two solutions where one solution is Pareto
dominant with respect to another solution if, for all objectives, it improves on
the other solution. A solution is called “non-dominated”, Pareto optimal, Pareto
efficient or “non-inferior”, if none of the objective functions can be improved in
value without degrading one or more of the other objective values. Therefore, a
practical approach to multi-objective optimization is to investigate a set of solu-
tions (the best-known Pareto set) that represents the Pareto optimal set as much
as possible [97]. Many Multi-Objective Optimization approaches using Genetic Al-
gorithms (GAs) have been developed. The literature on the topic is vast; Coello
lists more than 2,000 references on this topic on his Websiteﬂ

Our approach builds on the successful and popular NSGA-IT algorithm [23].
The objective of NSGA-II is to improve the adaptive fit of a population of candi-
date solutions to a Pareto front, constrained by a set of objective functions. The
population is sorted into a hierarchy of sub-populations based on the ordering of
Pareto dominance. Similarity between members of each sub-group is evaluated on
the Pareto front, and the resulting groups and similarity measures are used to
promote a diverse front of non-dominated solutions.

3.2 Feasible/Infeasible 2-Population Genetic Algorithm

Many search/optimization problems have not only one or several numerical ob-
jectives, but also a number of constraints — binary conditions that need to be

2 http://www.cs.cinvestav.mx/~constraint /papers,
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Fig. 2: METACOMPOSE’s architecture.

satisfied for a solution to be valid. The approach we adopt for melody generation
contains such strong rules; these are described in detail in Section A number
of constraint handling techniques have been developed to deal with such cases
within evolutionary algorithms. The Feasible/Infeasible 2-Population method (FI-
2POP) [43] is a constrained evolutionary algorithm that maintains two populations
evolving in parallel, where feasible solutions are selected and bred to improve their
objective function values, while infeasible solutions are selected and bred to reduce
their constraint violations. In each generation, individuals are tested for constraint
violations; if they present at least one violation they are moved to the 'Infeasible’
population, otherwise they are moved to the 'Feasible’ population. An interesting
feature of this algorithm is that the infeasible population influences, and some-
times dominates, the genetic material of the optimal solution. Since the infeasible
population is not evaluated by the objective function, it does not become fixed in
a sub-optimal solution, but rather is free to explore boundary regions, where an
optimum solution is most likely to be found.

3.3 Non-dominated Sorting Feasible-Infeasible 2 Populations

When dealing with constrained optimization problems, the approach is usually to
introduce penalty functions to act for the constraints. Such an approach favors fea-
sible solutions over the infeasible ones, potentially removing infeasible individuals
that may lead to an optimal solution, and finding solutions that can be considered
local optimum. There have been many examples of constrained multi-objective
optimization algorithms [241[T6}42L[4T].

The internals of METACOMPOSE use a combination of FI-2POP and NSGA-II,
dubbed Non-dominated Sorting Feasible-Infeasible 2 Populations (NSFI-2POP),
which units the benefits of maintaining an infeasible population, free to explore the
solution space without being dominated by the objective fitness function(s), and
finding the Pareto optimal solution for multiple objectives. The algorithm takes
the structure of FI-2POP, however the objective function of the feasible function
is substituted with the NSGA-IT algorithm. In Section (below) an application
of this approach to the evolution of melodies is described.
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Fig. 3: The affective roles of the composition generator and of the real-time affec-
tive music composer: the first creates music abstractions that do not present any
explicit affective expression, the latter renders compositions to reflect a specified
mood.

4 MetaCompose

METACOMPOSE consists of three main components: (i) composition generator (Sec-
tion[)), (ii) real-time affective music composer (Section[6) and (iii) an archive (Sec-
tion [7) of previous compositions (Fig[2). The modular nature of METACOMPOSE
allows components to be easily exchanged for others or augmented with further
components.

The composition generator (i) creates the basic abstraction of music that will
be used by the real-time affective music composer (ii) in order to create the final
score according to a specific mood or affective state. In other words, as a metaphor,
the composition generator (i) serves as a composer that only writes the basic
outline of a piece, while the real-time affective music composer (ii) acts as an
ensemble, free to interpret the piece in different ways. It is therefore important to
note that the compositions generated by (i) do not include any explicit affective
information, this is subsequently introduced by (ii) (see Figure . The purpose
of this structure is to allow each composition to be expressed with potentially
any affective content. The archive (iii) maintains a database of all the previous
compositions connected to the respective levels/scenes of the game-state while also
allowing a rank to be computed that measures the novelty of future compositions
compared to those historically generated. METACOMPOSE is designed to be able
to react to game events depending on the effect desired. Examples of responses
to such events include: a simple change in the affective state, a variation of the
current composition, or an entirely new composition.

METACOMPOSE is developed in JavaEl, and makes use of the JMusi(ﬂ and the
Beadﬂ [10] libraries.

3 https://www.oracle.com/java/index.html
4 http://explodingart.com/jmusic/
5 http://www.beadsproject.net/
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5 Composition Generation

Composition in this paper refers to an abstraction of a music piece composed
by a chord sequence, a melody and an accompaniment. It is worth noting that the
term accompaniment denotes an abstraction, not the complete score of a possible
accompaniment, described in detail in Section (below). The main reason for
the deconstruction of compositions is to produce a general structure (an abstrac-
tion) that makes music recognizable and provides it with some referential identity.
Generating abstractions, which themselves lack some information that one would
include in a classically composed piece of music — e.g. tempo, dynamics, etc. —
allows METACOMPOSE to modify the music played in real-time depending on the
affective state the interactive media wishes to convey. The generation of composi-
tions is a process with multiple steps: (i) creating a chord sequence, (ii) evolving a
melody fitting this chord sequence, and (iii) producing an accompaniment for the
melody/chord sequence combination (see Fig. .

5.1 Chord Sequence Generation

The method for generating a chord sequence works as follows: random walks are
performed on a directed graph of common chord sequences (see Fig. [5]) starting
from a given chord. Referring to Figure [5, the graph does not use a specific key,
but rather ‘degrees’: in music theory, a degree (or scale degree) is the name given
to a particular note of a scale to specify its position relative to the ‘tonic’ (the
main note of the scale). The tonic is considered to be the first degree of the scale,
from which each octave is assumed to begin. The degrees in Fig. |5| are expressed
in Roman numerals and, when talking about chords, the numeral in upper-case
symbolizes a major chord, while lower-case (usually followed by an m) express a
minor chord, which is sometimes omitted. Other possible variations on the chord
are generally expressed with numbers and other symbols; these are not listed for
the sake of brevity. Therefore, if we consider the D major scale, the Dmajor chord
would correspond to a I degree, while a iiim degree would be a Ffminor. Various
parameters of the generated sequence can be specified, such as sequence length,
first element, last element, the chord to which the last element can resolve (e.g., if
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Fig. 5: Common chord progression map for major scales, created by Steve Mug-
glin [68].

we specify that we want the last chord to be able to resolve in the V' degree, the
last element might be a IV or a iim degree).

An interesting aspect of this graph is that it also shows common resolutions to
chords outside of the current key, which provide a simple way of dealing with key
changes. Each chord can be interpreted as a different degree depending on which
key is considered, so if we want a key change we can simply: (i) find out which
degree the last chord in the sequence will be in the new key and (ii) follow the
graph to return to the new key. This should produce harmonious key changes that
do not sound abrupt.

5.2 Melody Generation

Melodies are generated with an evolutionary algorithm approach. We define a
number of features to include (objectives) and to avoid (constraints) in melodies,
these are based on classical music composition guidelines and musical practice.
These features are divided into constraints and objective functions. Accordingly,
we use a Feasible/Infeasible two-population method (FI-2POP [45]) with multi-
objective optimization [22] for the Feasible population. These features are in no
way universally correct, but represent the current implementation of the system.
It is possible to exchange them for others, and the system would still work, al-
though the product quality would change for better or for worse. Given a chord
sequence, a variable number of notes are generated for each chord, which will evolve
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without duration information. Once the sequence of notes is created, we generate
the duration of the notes pseudo-randomly. We are easily convinced that there
is potential to improve the system in this respect, and have experimented with
different methods, yet we found no significant or obvious improvement compared
to the method described. Therefore, instead of presenting a method which we do
not believe creates a strong addition to the system, we present results with this
simpler technique. Considering that these durations are only used as a starting
point for the affective expression, we believe the impact on the music produced
would be negligible.

5.2.1 Genome Representation

The evolutionary genome consists of a number of values (the number of notes to
be generated) that can express the notes belonging to two octaves of a generic
key (i.e. 0-13). Here, we do not introduce notes that do not belong to the key,
effectively making the context in which the melodies are generated strictly diatonic.
Variations will appear in later stages in the real-time affective music composer
module when variations of the composition to express affective states or chord
variations are introduced. The length of the genome depends on how many chords
were generated in the previous step and can range from 1 to 8 notes per chord.

5.2.2 Constraints

We have three constraints. A melody should: (i) not have leaps between notes
bigger than a fifth, (ii) contain at least a minimum number of leaps of a second
(50% in the current implementation) and (iii) each note pitch should differ from
the preceding note pitch.

n—1
Feasibility = — Z (Second(i, i + 1) + BigLeap(i,i + 1) + Repeat(i, i+ 1)),
i=0
where n is the genome length (1)

The three functions comprising eqn. are all Boolean that returning either
1 or 0 depending if the two notes at the specified indexes of the genome satisfy
the constraint or not. As can be seen, this function returns a number that ranges
from (potentially) —3(n — 1) to 0, where reaching the score 0 determines that the
individual satisfies all the constraints and, consequently, can be moved from the
infeasible population to the feasible population.

On the constraints in eqn. , leaps larger than a fifth do appear in music but
they are avoided here, as experience suggests they can be hard on the ear of the
listener [15]. Namely, if the listener is not properly prepared, leaps larger than a
fifth can easily break the flow of the melody. We also specify a minimum number of
intervals of a second (the smallest interval possible considering a diatonic context
such as this, see the Genome Representation section) because if the melody has
too many large leaps it feels more unstructured, not something that we would
normally hear or expect a voice to sing. Finally, the constraint on note repetition
is justified by the fact that repetitions will be introduced by the real-time affective
MUSIC COMPOSET.
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5.2.8 Fitness Functions

Three objectives are used to compose the fitness functions: a melody should (i)
approach and follow big leaps (larger than a second) in a counter step-wise motion
(explained below) (eqn. , (ii) where the melody presents big leaps the leap notes
should belong to the underlying chord (eqn.[3) and finally (iii) the first note played
on a chord should be part of the underlying chord (eqn. ).

First, we remind the reader that the definition of an interval in music theory is
the difference between two pitches. In Western music, intervals are differences
between notes belonging to the diatonic scale, e.g. considering a C'major key, the
interval between C and D is a second, the interval between C' and F is a third etc.

n—1

CStep = Z [IsLeap(i,i + 1)(PreCStep(i,i + 1) + PostCStep(i, + 1))] /leapsN
i=0

where C'Step stands for CounterStep, PreCStep for PreCounterStep,

and PostCStep for PostCounterStep (2)

CStep (eqn.|2)) measures counter step-wise approach and follow to big leaps. To
clarify what counter step-wise motion means: if we examine a leap of a fifth from C
to G, as in Fig. [f] - assuming we are in a Cmagjor key — this is a upward movement
from a lower note to a higher note, a counter step-wise approach would mean that
the C would be preceded by a higher note (creating a downward movement) with
an interval of a second, therefore a D. Likewise, following the leap in a counter
step-wise motion would mean that we need to create a downward movement of a
second after the GG, therefore we would need an F to follow.

The reason we introduce this objective is that it makes leaps much easier on
the listener’s ear, otherwise counter step-wise motions often sound too abrupt,
by suddenly changing the range of notes the melody is playing. The PreCStep
and PostCStep functions are Boolean functions that respectively check if the note
preceding and following the leap approaches or departs with a contrary interval of
a second.

The reason for having the leap notes — the two notes that form a leap larger than
a second — as part of the underlying chord, is that such leaps are intrinsically more
interesting than a step-wise motion, this means that the listener unconsciously
considers them more meaningful and pays more attention to them [15].

When these leaps contain notes that have nothing to do with the underlying
chord, even if they do not present real dissonances, they will be perceived as
dissonant because they create unexpected intervals with the chord notes. Including
leaps as part of the chord gives a better sense of coherence that the listener will
consider as pleasant.
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n—1

ChOnlLeap = Z [IsLeap(i, i + 1)(BeToChord(i) + BeToChord(i + 1))] /leapsN,
i=0

where ChOnLeap stands for Chord On Leap, and BeToChord

for Belongs To Chord (3)

The ChOnLeap function (eqn. [3) calculates how many leap notes belong to
the underlying chord by checking if there is a leap between each two notes of the
melody (IsLeap) and, if that is the case giving a positive score for each of the two
notes that is part of the underlying chord (BeT'oChord = belongs to chord).

FirstNtOnChord = Z(IsFirstNote(i) x BeToChord(i))/chordsN
i=0
where FirstNtOnChord stands for FirstNoteOnChord, and BeT oChord for

BelongsToChord (4)

The last objective (eqn.|4]) emphasizes the importance of the first note following
a chord change, by playing a note that is part of the chord we reinforce the change
and make the chord change sound less discordant.

Note that these objectives, by the nature of multi-objective optimization, will
generally not all be satisfied. This is acceptable, as satisfying all objectives might
make the generated music sound too mechanical and predictable, while such “soft”
rules are only enforced to a certain point, namely the Pareto frontier (contrary to
the constraints of the infeasible population, which always need to be satisfied).

5.3 Accompaniment Generation

Accompaniment is included in the composition because, not only do chords and
melody give identity to music, but also provide rhythm. Accompaniment is divided
into two parts: a basic rhythm (a collection of note duration) and a basic note
progression (an arpeggio). We can progress from the accompaniment represen-
tation to a score of the accompaniment by creating notes, with duration from the
basic rhythm and pitches from the progressions (offset on the current underlying
chord).

In previous work [84], we described an approach to generating rhythms con-
sisting of a stochastic process involving combinations and modifications of some
elements taken from a small archive of basic rhythms. METACOMPOSE was up-
graded to make use of Fuclidean rhythms [90], which have the property that their
onset patterns are distributed as evenly as possible. Toussaint [90] also shows how
such rhythms include a large family of rhythms used as rhythmic ostinatos in
world music. Euclidean rhythms can be generated very efficiently and fulfill the
objective of having a basic “pulse” for the instruments to follow.

Arpeggios are generated through a stochastic process involving combinations
and modifications (inversions, mutations, etc.) of some elements taken from a small
archive of basic rhythms. Specifically we have two basic arpeggios (see Fig. [7]).
The algorithm performs the following steps:
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Fig. 7: Basic arpeggios. These are represented as if they were played under a
C major or C minor chord, but are transposed depending on what chord they
appear underneath. Also the rhythmic notation of the arpeggio is dependent on
the rhythmic structure.

—_

choose a basic arpeggio;

shuffle the elements of the arpeggio;

3. increase the arpeggio to match the size of the basic rhythm (done by intro-
ducing at a random index of the arpeggio a new random pitch that already
belongs to the arpeggio).

o

The rhythm presented in the final music will be modified by the real-time
affective music composer for variety or for affect expression, while still maintaining
a rhythmic and harmonic identity that will provide a characteristic signature for
the composition.

5.83.1 Implementation details

This section serves to describe the specific operators and parameters used to obtain
the results discussed later in the paper. The feasible population (i.e. that running
NSGA-II) utilizes a binary tournament selection operator: two random individ-
uals are chosen from the population and compared. The individual that dominates
the pair is selected as a parent for a crossover operator, this operator is executed
twice to obtain the two parents required by a crossover operator. In the event nei-
ther individual dominates the pair, a parent is chosen randomly among the pair.
The infeasible population uses a roulette-wheel selection operator: the selection
is a stochastic process where individuals have a probability of becoming parents
for the next generation proportional to their fitness. In this way individuals with
higher fitness are more likely to be selected while individuals with lower fitness
have a lesser chance, however they may have genetic material that could prove
useful to future generations and are therefore preserved. Both populations adopt a
simple single point crossover operator and an elitist strategy, meaning that
a specified number of the best individuals from the current population is allowed
to carry on to the next one without being altered. The mutation operator gives
each gene a probability 1/1, where [ is the genome length, to mutate. This ensures
that on average only one gene will mutate but allows for more than one or no
mutation to occur. The mutation itself transforms the note the gene represents to
either the note directly above or directly below the mutated note in the scale.
The parameters used are:

— Population size: 500

— Generation number: 5000
— Elitist factor: 25%

— Mutation rate: 10%
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6 Real-Time Affective Music Composer

The purpose of the real-time affective music composer is to go from the abstract
compositions we have created to actual music. There are two main components
of the process: a stochastic interpretation of the composition, that creates music
that reflects the abstraction while presenting variations, and the modification of
some musical and sonorous features to express affective meaning.

The system builds on a number of instruments, each with an algorithm to
interpret some (or all) the data that comprises a composition; this interpretation
is responsible for turning the abstraction into the score the system plays. These
algorithms can be simple or complex, but should always contain some stochastic
element, in order to avoid repetition. We created this instrument system to give
some creative freedom to the developers that might use this music generation
system; for example by making the instruments play accordingly to a specific
music style or to create music that fits better with their accompanying media.

The instruments send the notes they generate in real-time to the standard
MIDI device provided by the Java language. The system can be configured to be
connected to an external MIDI device to provide for sound synthesis.

6.1 Mood expression theory

We now describe our model for mood expression in terms of music theory and how
mood influences the production. We propose four musical features that influence
perceived mood in music, these are: intensity, timbre, rhythm, and dissonances.
These are mainly inspired by Liu et al. [57]. While Liu et al.’s research focused on
mood classification via machine learning, we applied and expanded their model to
generate music instead.

6.1.1 Intensity

Intensity (or Volume) is defined by how strong the volume of the music is. It is an
arousal-dependent feature: high arousal corresponds to high intensity; low arousal
to low intensity. Intuitively, high volume music results in increased stress. In a
similar way, lower volume music, being less intense, is less arousing and has lower
intensity.

6.1.2 Timbre

Timbre is defined as the combination of qualities of a sound that distinguishes
it from other sounds of the same pitch and volume. For example, timbre is what
makes the C4 chord sound different when played on a piano as opposed to a
guitar. It is often associated with “how pleasing a sound is to its listeners” [4].
One of timbre’s most recognizable features is what we could call “brightness”,
that is, how much of the audio signal is composed of bass frequencies. In previous
literature audio features such as MFCC (Mel-Frequency Cepstral Coefficients [52]
and spectral shape features [34] have been used to classify music on the basis of its
timbral feature. We associated timbre with valence: the more positive the valence,
the brighter the timbre.
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6.1.3 Rhythm

Rhythm is divided into three features: strength, regularity and tempo [57].

— Rhythm strength: how prominent is the rhythmic section is (drums and bass).
This feature is arousal dependent and our system acts by regulating the vol-
umes of the instrument currently considered the “bass” to be proportionally
higher or lower in the general mix.

— Regularity: how steady the rhythm is. This feature is valence dependent.

— Tempo: how fast the rhythm is. This feature is arousal dependent and influences
the beats-per-minute (BPM) that the instruments follow.

In a high valence/high arousal piece of music, for instance, we observe that the
rhythm is strong and steady. In a low valence/low arousal, on the other hand, the
tempo is slow and the rhythm not as easily recognized.

6.1.4 Dissonance

Dissonance is the juxtaposition of two notes very close to each other: for example
C and Cf. The distance between these two is just a semitone, which gives the
listener a generally unpleasant sensation. A dissonant interval does not always
sound bad. In fact most music contains dissonances, they can be used as cues
expressing something amiss. The listener’s ear can also be trained to accept disso-
nances through repetition, which explains why some music genres rely heavily on
intervals that are avoided by other ones.In general, the larger the interval between
the two dissonant notes, the ‘easier’ it is on the listener’s ear: a C and a Cf are
always dissonant, but the dissonance is more evident if the notes are played from
the same octave. C.P.E. Bach, in his Essay on the True Art of Playing Keyboard
Instruments [B], remarks on the affective power of dissonances, although in a more
general way: “... dissonances are played loudly and consonances softly, since the
former rouse our emotions and the latter quiet them”.

Meyer [63] observes that the affect-arousing role of dissonances is evident in the
practice of composers as well as in the writings of theorists and critics, remarking
how the affective response is not only dependent on the presence of dissonances
per se, but also upon conventional association. This means that depending on the
conventions of the musical style, dissonances might be more or less acceptable to
the listener, and so can arouse different affective reactions. A study of listening
preferences for infants, conducted by Trainor and Heinmiller [91], shows that
even these young listeners, with no knowledge of musical scale, have an affective
preference for consonance.

It is important to notice that, while dissonances do occur in music constrained
to a certain key, we only consider the introduction of out-of-key notes to introduce
a higher degree of dissonance in the music. We connect this feature to valence,
hypothesizing that introducing more and more dissonances creates a more negative
affect expression.

Out-of-key notes are introduced with the hypothesis that they create more
negative valence. The more dissonances added, the more negative the valence. To
maintain a feeling of purposeful composition, the possible notes that can appear
correspond to the alteration of different scales, going further and further away from
the Tonian mode (major mode) according to western music theory (this idea was
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inspired by Husain’s study on mode’s effects on mood [39]). It is important to note
that METACOMPOSE does not perform proper mode changes; they are unprepared
and the harmonic framework stays in a major key. Assuming a tonic of C, new
notes that can appear in the piece are (from higher to lower valence):

Bb, from the Myxolydian mode

Bb and Eb, from the Dorian mode

Bb, Eb and Ab, from the Aeolian mode

— Bb, Eb, Ab and Db, from the Phrygian mode

The reader might notice we are missing the Lydian and Locrian modes; we
decided to exclude these scales for two different reasons. The Lydian mode is
the same as the Ionian mode with its fourth degree raised, but it introduces a
interval not as easily built upon to reach other modes (i.e. it requires the removal
of the alteration to the fourth before adding new alterations). The Locrian mode is
defined as a diminished mode as, although its third scale degree is minor, the fifth
degree is diminished, instead of perfect. We have excluded it from our listening
study mostly because we felt the music produced lost quality, as the diminished
intervals make the piece sound less musically structured.

7 MetaCompose Archive

The archive’s purpose is to store the previously generated compositions and asso-
ciate these with game-related information, such as: levels, events or even entities.
Another main function of the archive is the implementation of a distance measure
that can give us information on how similar two compositions are. Such a measure
helps manage diversity via similarity in previous and new tracks.

The distance measure we chose is the Tonal Pitch Step Distance [21], which
measures distance of chord progressions on the basis of harmonic similarity. It uses
a variant of Lerdahl’s Tonal Pitch Space [54] to measure the distance of a chord to
the tonic triad of its key. We have chosen this particular measure, even if it only
considers the chord sequence part of our compositions, because we believe that a
lot of the recognition of a song depends on the similarity of the chord sequence. Of
course we realize that melodies are also very important, they are easy to recall and
we generally connect them to a song, yet we believe that if you listen to the same
melody, on two different chord sequences, it is not as immediately recognizable.
On the other hand, the opposite is easier. In the future we might expand the
distance measure to also include differences in the melody, but we decided it was
not necessary for this first implementation of the system.

The main reason to have this mechanism is to allow the game-designer to direct
METACOMPOSE to create music that the game-player would regard as consistent
with the content presented to him/her previously. A case in which this might
be useful is: if an important game-event occurs, which the game-designer wants
to underline with a new composition and not just with a change in the affective
meaning expression, he/she might want a new composition to share some similarity
with the one previous heard and archived (e.g. the player might be in the same
game-play level). As an example of the opposite, imagine the player moving from
one area to another that is very different to anything previously seen. The game-
designer may want to reflect this transition (at least partly) through music, so the
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game-designer directs METACOMPOSE to generate a track with a high distance
score from any previously archived.

8 Evaluation of the Composition Generation

METACOMPOSE has been subject to an extensive quantitative study in order to
validate our music generation approach. The main objective of the study is to
investigate the contribution of each component of the framework to the perceived
quality of the music created. To do this, METACOMPOSE components were sys-
tematically switched off and replaced them with random generation. From these
random “broken” generators, and the complete METACOMPOSE system, we cre-
ated various pair-wise samples to test against each otherﬁ As the quality of music
is a subjective matter, participants are asked to prefer one of two pieces of mu-
sic presented to them, one generated by the complete algorithm and one from a
“broken” generator with one component replaced with random generation. Quality
is evaluated according to four criteria: pleasantness, randomness, harmoniousness
and interestingness. These four criteria present a good overview of the preference
expressed by the participant. Note that no definition of these terms is offered in
the survey, and there is therefore no guarantee that participants interpret these
criteria the same way (or for that matter differently).

Pleasantness intends to measure how pleasing to the ear the piece is, but this
alone is not sufficient to describe the quality of the music produced. There are
countless pieces of music that do not sound pleasant, but may nonetheless be
considered by the listener as “good” music. In fact, in music, often uncommon (and
even discordant) chord sequences or intervals are introduced to express different
features in a score, such as affect as well as other narrative information. Also
note that some alterations or passages can be specific of a music style. Moreover,
discordant intervals are more acceptable to the ear the more often they are repeated
they are (see dodecaphonic music [71] for example).

Interestingness is a criterion introduced to overcome the just described limi-
tations of the pleasantness criterion: in this way we intend to test if one of our
“broken” scores might introduce something that results in something considered
interesting to the listener, even when the composition is not as pleasant or har-
monic. Note that this is a very subjective measure, as most people have a different
opinion about how interesting they perceive a score to be.

On the other hand, harmoniousness might be confused with pleasantness, but
we hope that it will be seen as a somewhat more objective measure: less of a
personal preference and more of a measure of the listener’s ability to recognize the
presence of dissonances and harmonic passages.

Finally, randomness intends to gathers a measure of how structured the music
appears to the listener. It is not only a measure of dissonance (or voices being
off-key), but also of how much the music seems to have a cohesive quality and
coherent internal structure. Examples of coherent internal structure are: (i) voices
working together well (ii) coherent rhythmic structure (iii) chord sequence pre-
senting tension building and eventual resolution.

6 This method is inspired by the “ablation studies” performed by Stanley [87].
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An online survey was developed with HTML and PHP, using a MySQL database
to hold the data collected. Participants were presented with pairs-wise music clips
and asked to evaluate them using the four criteria described. Each of the four
criteria has a multiple choices question structured as:

‘Which piece do you find more pleasing? “Clip A”/“Clip B” /“Neither”/
“Both Equally”,

where the last word (e.g. “pleasing”) is dependent on the criterion. We also include
the more neutral answers “Neither” and “Both Equally” to avoid randomness in
the data from participants who cannot decide which clip satisfies their evaluation
according to the criterion better or worse. Other benefits of doing this are: avoiding
the participant getting frustrated, and giving us some possibly information on
interesting individual pairs, where the pieces are considered equally good/bad.

Note that, for the first five questions in the survey, the pair-wise clips always
included one clip from the complete generator. After five trials, the clip pairs are
picked at random between all the groups. In this way, we hoped to collect enough
data to be able to make some observations between the four “broken” genera-
tors. The motivation behind this survey design choice is that our main question is
evaluating the complete generator against all possible alternatives, so attention to
the complete METACOMPOSE architectural has priority. This also has a practical
justification in the fact that, with the number of groups we have (five), testing
all possible combinations and gather enough data would be practically impossi-
ble. The survey has no pre-defined end: the user is able to continue answering
until he/she wants, and can close the online survey at any time or navigate away
from it without data loss. However, in the preamble to the survey, we encouraged
participants to perform at least five comparisons.

8.1 Music clip generation

The five groups were examined (as dictated by the architecture of METACOM-
POSE):

A. Complete generator: the complete composition generator, METACOMPOSE,
as described in Section [B}

B. Random chord sequence: the chord sequence module is removed and re-
placed with a random selection of chords;

C. Random unconstrained melody: the melody generation evolutionary al-
gorithm is replaced with a random selection between all possible notes in the
melody range (two octaves);

D. Random constrained melody: the melody generation evolutionary algo-
rithm is replaced with a random selection between all possible notes belonging
to the key of the piece in the melody range (two octaves). We decided this
was necessary as (by design) our melody evolution approach is restricted to a
diatonic context;

E. Random accompaniment: the accompaniment generation is replaced by a
random accompaniment abstraction (we remind the reader that an accompa-
niment abstraction is defined by a basic rhythm and note sequence).
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Table 1: Number of correct, incorrect and neutral answers to our criteria for the
complete generator (A) against all the “broken” generators (B-E), com-
bined. Note that in the case of the random criterion the listener is asked to select
the clip that he/she feels the most random, so it is entirely expected that a low
number of participants choose the random clip (E) against the complete gen-
erator (A).

Choice Pleasing Random Harmonious Interesting
METACOMPOSE (A) 654 197 671 482
Choose a “broken” generator (B-E) 240 633 199 327
A neutral answer 197 261 221 282
Total non-neutral answers 894 830 870 809
Binomial test p-value 7.44E-21 2.75E-77 2.05E-29 7.81E-02

For each of these 5 groups, 10 pieces of music are created. For the sake of this
experiment the affect expression has been kept to a neutral state for all the groups
and we used the same algorithms to improvise on the composition abstraction.
There is therefore no exploration of the music generators’ affect expression but
rather an evaluation of the music quality from the complete architecture compared
to the architectural alternatives. The clips for the various groups can be accessed
at http://msci.itu.dk/evaluationClips/

8.2 Results and analysis

The data collected amounts to 1,291 answers for each of the four evaluation criteria
from 298 participants. Of the survey trials generated, 1,248 contained a clip gener-
ated with METACOMPOSE (A). Table [I| shows how many responses were obtained
for each criterion and how many neutral answers were collected.

For now we only consider definitive answers (where a participant chooses one
of the music clips presented), we examine the impact of the neutral answers at
the end of this section. Under this constraint, the data becomes Boolean: answers
are either “user chooses the clip from the complete generator (A)” or “user chose
the clip from a broken generator (B-E)”. To analyze this data we use a two-tailed
binomial test, which is an exact test of the statistical significance of deviations from
a theoretically expected random distribution of observations in two categories. The
null hypothesis is that both categories are equally likely to occur and, as we have
only two possible outcomes, that probability is 0.5.

8.3 Complete Generator against all other groups

Firstly, let us consider the combined results of all the “broken” groups (B-D)
against METACOMPOSE (A): as can be seen from Tab. [l we have statistically
highly significant differences for the pleasing, random and harmonious categories,
while we have a p-value of 0.078 for the interesting category. This means that
we can refute the null hypothesis and infer a difference in distribution between
choosing the music generated by the complete algorithm (A) and the “broken”
ones (B-E).
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Table 2: Answers and results of the binomial test for pairs comprised of the full
generator, METACOMPOSE (A), and the one with random chord sequences

(B).

MetaCompose (A) vs (B) | Pleasing | Random | Harmonious | Interesting
Successes 121 71 112 98
Failures 93 117 84 98
Totals 214 188 196 196
Binomial test p-value 3.23E-02 4.90E-04 2.68E-02 5.28E-01

We can affirm that METACOMPOSE (A) ranked better than all the others (B-E)
for three of our four criteria, with the exception of interestingness, where there
is no statistically significant difference. Interestingness is clearly a very subjective
measure, and this may explain the result. Moreover, examining the ratio of neutral
answers obtained for this criterion, it can be observed that it is almost 26%, a
much higher neutral response that for the other criteria. This shows that in a
higher number of cases participants could not say which composition they found
more interesting. A possible explanation is that, as the affect expression (which
also includes musical features such as tempo and intensity) is held in a neutral
state, equal for all pieces, after hearing a number of clips listeners does not find
much to surprise them. Also the duration of the generated pieces (ca. 30 seconds)
might not allow sufficient time to determine interestingness.

8.4 Complete Generator against random chord sequence generation

If we only consider the pairs that included the METACOMPOSE (A) and the one
with random chord sequences (B) (Tab.[2)) we, again, obtain statistically significant
differences in the distribution of the answers for the pleasing, random and harmo-
nious criteria. In this case we have a very high p-value for interestingness (more
than 0.5), in fact we have the same degree of preference for the METACOMPOSE
(A) and the “broken” generator (B). We can explain this by considering that the
disruptive element introduced by this modification of METACOMPOSE is mitigated
by the fact that the rest of the system tries to create as pleasing music as it can,
based on the chord sequence produced. So, for most of the time, the music will not
have notes that sound out of key or that do not fit well with the chord sequence.
Still, we observe how the listener is capable of identifying that, while the piece
does not sound discordant or dissonant, it lacks the structure of tension-building
and tension-releasing. This explains how METACOMPOSE (A) is preferred for all
other criteria. It is interesting to note how the act itself of presenting the listener
with uncommon chord sequences does result in an increase of the interestingness
of the music.

8.5 Complete Generator against unconstrained melody generation

When we consider the unconstrained melody group we have statistically significant
differences for all criteria, with some extremely strong significance (Tab. . These
results are as we expected, as the melody plays random notes that conflict with
both the chord sequence and the accompaniment.
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Table 3: Answers and results of the binomial test for pairs comprised of the
full generator, METACOMPOSE (A) and the one with unconstrained random

melody (C).

MetaCompose (A) vs (C) | Pleasing | Random | Harmonious | Interesting
Successes 221 21 236 144
Failures 26 221 19 72
Totals 247 242 255 216
Binomial test p-value 5.15E-40 1.44E-43 4.11E-49 5.46E-07

Table 4: Answers and results of the binomial test for pairs comprised of the full

generator METACOMPOSE (A), and the one with constrained random melody

(D).

MetaCompose (A) vs (D) | Pleasing | Random | Harmonious | Interesting
Successes 125 81 120 108
Failures 100 109 85 94
Totals 225 190 205 202
Binomial test p-value 5.47E-02 2.49E-02 8.68E-03 1.80E-01

8.6 Complete Generator against constrained melody generation

The results given by the constrained random melody generation (D) are more in-
teresting (Tab. . First, we notice no statistically significant values for the pleasing
and interesting criteria. This is explained by the fact that the melody never goes
off key, so it never presents off-key notes and never sounds abruptly “wrong” to
the listener’s ear. Yet, the random and harmonious criteria are statistically sig-
nificant. Remembering how we described these criteria, we notice that the more
objective criteria (random and harmonious) are those that demonstrate a differ-
ence in distribution. We believe this reinforces how, although compositions made
in this group never achieve a bad result, the listener is still able to identify the
lack of structure (randomness) and lack of consideration of the underlying chords
of the melody (harmoniousness). An example of the first case would be a melody
that jumps a lot between very different registers; this would make the melody
sound more random than the melodies we evolve using (A) — METACOMPOSE —
which follow more closely the guidelines of a singing voice. Harmoniousness can be
influenced by the fact that, over a chord (expressed by the accompaniment), the
melody can play notes that create intervals that ’confuse’ the clarity of the chord
to the listener’s ear.

8.7 Complete Generator against random accompaniment generation

Finally, for the last group, the random accompaniment generation (E), gives us
very clear statistically significant results on all criteria (Table . A lot of the
harmony expression depends on the accompaniment generation, and when this is
randomized it is no wonder that the piece sounds confusing and discordant. This
is reflected in the trial data.
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Table 5: Answers and results of the binomial test for pairs comprised of the full
generator, METACOMPOSE (A), and the one with random accompaniment

(B).

MetaCompose (A) vs (E) | Pleasing | Random | Harmonious | Interesting
Successes 188 25 203 132
Failures 21 186 12 63
Totals 209 211 215 195
Binomial test p-value 5.00E-35 6.58E-32 3.01E-46 4.35E-07

9 Evaluation of valence expression through dissonance

An evaluation conducted on an earlier prototype of a mood expressive music gen-
erator indicates that our mood expression theory better expresses arousal than
valence (positive/negative feelings) [83]. Therefore, we are conducting a series of
user studies to learn, in more depth, what the effect of the features we believe
influence valence actually is. We present the results for an evaluation that focuses
on the introduction of dissonant intervals by mean of altered tones (i.e. notes that
are not included in the prevailing tonality, from now on also referred as out-of-
key notes for brevity) and in particular how it affects valence in algorithmically
generated music. The research questions this study addresses are:

1. Can negative valence be expressed via the introduction of altered tones in the
generated music?
2. Can the quality of generated music be maintained when such notes are added?

To this end, we present and discuss the results of a participant-based evaluation
study.

Traynor [91] shows how infants prefer consonant intervals to dissonant ones, yet
there is a significant difference between instinctive preference and perceived neg-
ative valence. Therefore the connection between dissonance and positive/negative
valence in METACOMPOSE is recorded and measured via an experimental platform
where users listen to music generated by variations of an algorithm. Statistical
analysis of user preferences is performed to characterize the differences between
the generative clips in which examples of dissonant and consonant music are pre-
sented.

9.1 Experiment design

The main objective of this study is the evaluation of the valence expression from
the introduction of altered tones in METACOMPOSE. The secondary objective is the
maintenance of perceived music quality under these circumstances. An experiment
was designed where pair-wise samples were tested against each other.

The survey asked participants to prefer one of two pieces of music presented
and evaluate them according to three criteria: most negative feeling expressed, most
well-composed and most interesting. The first criterion is the one to answer for our
main research question: can negative valence by expressed by the introduction
of altered tones? The other two ratings are more related to the secondary ques-
tion: can we maintain the quality of the music while introducing altered tones?
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We expected lower preference in the “well-composed” criterion for the Out-of-key
group, as it can introduce intervals that might be unpleasant (although this might
be subjective and sensitive to the cultural background of the individual). The “in-
terestingness” criterion we expected to be mostly balanced, to show how the music
with altered tones can still be interesting to listen to. Martinez and Yannakakis [61]
suggest that ranking produces more consistent and reliable data when annotating
affect information, therefore the choice of asking the participants to compare two
pieces of music. Each criterion has a multiple choices question structured as:

Which piece seems to express more negative feelings?
“Clip A7/“Clip B”/“Neither”/ “Both Equally”,

where the wording is dependent on the three criteria. As in the study detailed
in the previous section, we also include the more neutral answers “Neither” and
“Both Equally” to avoid randomness in the data from participants who cannot
decide which clip satisfies the evaluation criterion better or worse. The survey
consists of ten questions, where the two clips presented are always one from the
consonant and one from dissonant groups. The music pieces are chosen in a way
that the participant will listen to all the clips produced for the experiment, but
with random pairings between the two groups.

9.1.1 Music clip generation

Ten clips were created for each group (consonant and dissonant), for a total of
20 pieces. For the sake of this experiment the affect expression has been kept to
a neutral state for all the mood-expressive features, apart from the dissonances
feature. The same algorithms have been used to improvise on the composition
abstraction. The clips for the various groups can be accessed at http://msci.
itu.dk/dissonanceClips/.

Table 6: Participant’s answers to our criteria. Also shown are the p-values, calcu-
lated using a two-tailed binomial test, and the Binomial Effect Size Display.

Choice Most negative | Most well-composed | Most interesting
Altered group 329 118 191

Diatonic group 95 305 233

Neutral answer 112 113 112

Total not neutral answers | 424 423 424

Binomial test p-value 1.38E-31 1.81E-20 2.32E-02

BESD 55.2% -44.1% -9.9%

9.2 Results and analysis

The data collected amounts to a total of 536 answers for each of the three eval-
uation criteria from 110 participants. Table [f] shows how many responses were
obtained for each criterion and how many neutral answers were collected.
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For now we only consider definitive answers (i.e. the participant chooses one of
the music clips presented); we will look at the impact of the neutral answers at the
end of this section. As for the previous study, under the definite choice constraint,
the data becomes Boolean: the answers are either “user chose the clip from the
Out-of-key group” or “user chose the clip from the Diatonic group”. To analyze
this data we use a two-tailed binomial test, with as null hypothesis that both
categories are equally likely to occur and, as we have only two possible outcomes,
that probability is 0.5. The Binomial Effect Size Display (BESD) [76] is another
way of looking on the effects of treatments by considering the increase of success
through interventions. This is an interesting measure, as it elucidates how much
of an effect is created, in our case, by the introduction of altered tones.

As it can be seen in Table[f] there is a strong statistical significance for the most
negative feeling, most well-composed and most interesting categories. Thus the null
hypothesis can be refuted and a difference in distribution can be inferred between
choosing the music generated with (and without) the introduction of altered tones.
This means that our system’s introduction of out-of-key notes expresses more
negative valence at the price of being perceived as less well-composed and less
interesting. The BESD values reflect what can be inferred from the p-values, yet
for the most interesting criterion the effect is much smaller (-9.9%), leading us
to conclude that not as much interestingness is lost as the statistically significant
p-value (2.32E-02) might suggest.

9.2.1 Outlier in dissonant group

An outlier was found by looking at the preference expressed for each of the Out-of-
key music clips (see Figure. This specific clip has a very different distribution of
answers than other Out-of-key clips with a much lower probability of being selected
as more negative, a higher chance of being selected as more well-composed and
a higher chance of being selected as more interesting. The piece is in Bb major,
which would be composed of Bb, C, D, Eb, F', G and A. According to the system
previously described, the piece should have its second, third, sixth and seventh
degree altered by lowering them by a semitone, leading us to this scale: Bb, Cb,
Db, Eb, F', Gb and Ab. Yet, we notice from the score that Cb and Gb never appear
in the piece. This effectively removes all the strongest dissonances from the piece:
those formed by notes distant by a semitone (Bb-Cb and F-Gb). This is a chance
event, formed by a combination of both the way the composition was formed and
the way the instruments have improvised over the abstraction.

By removing the data obtained by questions in which this clip appeared, we
notice a slight increase in significance for all three criteria (in the order of 1071).
This is expected, as it reinforces the distribution of the data we observed while
considering all out-of-key samples.

9.2.2 Demographics

Our participant’s population is composed by 89 males and 11 females. The average
age is 29.5 (stdev 13.8). Participants were asked to rate their skill with a music
instrument and their knowledge of music theory according to a five point Likert
scale. The participants have reported a similar level of musical training (avg: 1.1
stdev: 0.97) and instrument skill (avg: 1.4 stdev: 1.2). The homogeneity of the



MetaCompose 27

Fig. 8: Score for the outlier piece in the out-of-key group.

population may explain how, however we partition the population, we find no sta-
tistically significant difference in the answers given. We observed two participants
that gave a high percentage of neutral answers (>75%). These participants self-
reported to have close to no training and experience with music instruments. Yet
the very low incidence of participants in this group makes it hard to make any
assumptions, especially as many other participants reported a similar level of skill
gave many definite choice answers.

If the population is divided by gender, we observe a higher preference in in-
terestingness for dissonant pieces in males, yet the overall low number of female
participants makes any conclusion here statistically unreliable.

10 Conclusion and future work

This paper described the METACOMPOSE component-based system for music gen-
eration based on creating an abstraction for musical structure that supports real-
time affective improvisation. We exposed the method of creating the abstrac-
tions ( “compositions”), which consists of the sequential generation of (i) chord
sequences, (ii) melody and (iii) an accompaniment abstraction. The approach to
evolve melodies using the non-dominated sorting with two feasible-infeasible pop-
ulations genetic algorithm (NSFI-2POP) is also described in detail.

Two quantitative studies are also presented as an evaluation of the system: the
first investigated the contribution of each component of the framework to the qual-
ity of the music created, while the second evaluated the valence expression of our
dissonance introduction technique. In the first study we systematically switched
off components of our generator and replaced them with random generation. From
these random “broken” compositions and the from the complete algorithm archi-
tecture we created various pair-wise samples to test. In particular, we observed four
broken groups: random chord sequences, random melody constrained (to the key
of the piece), random melody unconstrained and random accompaniment. Analysis
of the data supports the assertion that participants prefer the complete system in
three of the four criteria: (pleasantness, randomness and harmoniousness) to the
alternatives offered. The results for the interestingness criterion are however not
definitive, but suggest that some parts of our generator have a higher impact on
this criterion.
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In the second study, analysis of the data supports the hypothesis that when
altered tones are introduced in the generated music, participants evaluate the
pieces as: i) expressing more negative valence; ii) being less well-composed and;
iii) being less interesting. While we expected the samples containing out-of-key
notes to be categorized as less well-composed, we hoped they would prove to be as
interesting as consonant samples. We need to underline that, as can be seen by the
Binomial Effect Size Display, the decrease in interestingness is only around 10%, so
while the result is statistically significant we do not experience a great loss against
the interestingness criterion. Moreover we realize that presenting both the “most
well-composed” and “most interesting” questions might have been a mistake, as
the participants might have been biased towards expressing an identical preference.

While the results in this paper show that we can reliably generate pleasant
music capable of expressing specified moods, there are many further modules that
could be added to MetaCompose, and many improvements that could be made.
Future work will focus on evaluating the other valence-expressing music features,
as in our previous study we found these to be perceived less consistently with
our mood-expression theory [83]. After these studies we will evaluate the complete
affect-expression capabilities of the system, following the methodology described
by Scirea et al. for characterizing control parameters through crowd-sourcing [83].
Free-text description of the generated music will not only validate the expressive
capabilities of the generator, but might also throw light of additional expressive
capabilities beyond the two-dimensional model of emotions that we are currently
using. Moreover a future study that should be conducted is comparing the music
generated by METACOMPOSE to music created by a human. The intrinsic prob-
lem of this type of experiment is that METACOMPOSE presents a “compositional
style” (i.e. small loopable compositions) and would very likely be very easy to
distinguish from most human-composed music. This could create a polarization of
the participants’ answers, with a likely bias against the system. A solution would
be to have the human compose in a similar style to the generator, yet this raises
the ethical question of how much should we “constrain” the human. Finally we
will integrate the system with multiple games and evaluate if any difference in
play-experience can be observed. In summary, we have presented the detailed de-
scription of the METACOMPOSE system and we have shown: (i) how each part of
our music generation method assists creating music that the listener finds more
pleasant and structured; (ii) how our system for expressing valence through disso-
nance produces the expected perceived affective state and; (iii) presented a novel
GA method for constrained multi-objective optimization.
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