
Adaptive puzzle generation for Computational
Thinking

Marco Scirea1

University of Southern Denmark, Denmark msc@mmmi.sdu.dk

marcoscirea.com

Abstract. This paper describes a system to generate puzzles with a dif-
ficulty degree that adapts to the player. The puzzle is designed with the
objective of being used by young pupils, and it is mainly a planning/se-
quencing task, which is considered one of the aspects of computational
thinking. The system is powered by a constrained multi-objective algo-
rithm (NSFI-2Pop) – which evolves the sequences of actions necessary to
solve the puzzle – combined with a stochastic algorithm that translates
the sequences in playable levels. We also present a pilot evaluation of the
system, which seems to indicate that the levels presented to the player
are perceived as having an increasing difficulty.

Keywords: Procedural Content Generation · Evolutionary Algorithms · Com-
putational Thinking.

1 Introduction

Computational thinking (CT) – being able to express problems and solutions
in ways that a computer could execute – is becoming increasingly important in
young pupils’ education, given the increasing digitisation of our world.

Puzzles have been a common method to introduce young pupils to compu-
tational thinking [13]. The issue we want to address in this paper is that these
puzzles, whether in digital or paper format, only present a static set of chal-
lenges and difficulty progression. This approach might work for some pupils, but
wouldn’t it be better for learning and concept assimilation if we could tailor the
puzzles to fit each student’s learning? The traditional way to do this, for exam-
ple in the class, would be for the teacher to create new levels or new puzzles.
This is however unpractical and very time consuming, especially if the quality
of the new puzzles has to be consistent and high. In the case of digital puzzles it
would also require the CT teachers to be programmers, as well as skilled game
designers. So our goal here is also to alleviate the workload of teachers, and
make it easier for them to assign digital puzzles to their pupils, as part of their
augmented classroom [1] or as flipped classroom materials [8].

This paper will focus on logical puzzles in which the solution is unique and
represented by a specific sequence of actions. Such puzzles can range from clas-
sical problems such as “river crossing puzzles” to puzzles that are closer to
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computer science topics (e.g. Knight Tour1is a puzzle where the player has to
make a knight visit each city in a map/graph once and only once). Examples of
such puzzles can be seen in games such as river-crossing puzzles, various puz-
zles appearing in the Professor Layton (Level-5, Matrix Software, 2007-2017)
series (e.g. the Toy Car minigame in Professor Layton and the Unwound fu-
ture [Level-5, 2008]), Sokoban (Thinking Rabbit, 1982), escape-the-room games
(e.g. the Zero Escape game series [Spike Chunsoft, 2009-2016]), most adventure
games (e.g. The Curse of Monkey Island [LucasArts, 1997]), and many more.
Many puzzles leave more freedom to the player in how to solve them, allowing
for more creative problem-solving, but we decided to focus on puzzles with pre-
defined solutions since they are more controllable and allow us to make sure the
player has mastered specific concepts when they are able to solve the problem.

In this project we want to generate puzzles (and their solutions) that require
the player to reason about sequences of actions, their effect, and how a goal can
be achieved in optimal way. Moreover, in order to solve the puzzles, the player has
to simulate the effect of a sequence of instructions; when the produced outcome
diverges from the player’s intuition, the player will be forced to redesign the
solution, and improve his or her understanding of the effect of the instructions
on the state of the game. These are central aspects of CT: the player has to
decompose the problem, formulate an algorithmic sequence of instructions to
solve the puzzle, and possibly recognise similar situations from previous puzzles
[18]. We decided therefore to evolve puzzle solutions, so our game will always
propose the players: i) a solvable puzzle, ii) which include different kinds of
challenges, iii) and have an adaptive difficulty level.

Finally, to make the system adapt to the player we introduce a simple player
model that keeps track of: what puzzles the player is able to solve as a measure
of what concepts have been internalised, and how long does the player take to
solve each challenge, giving us a measure of how difficult the puzzle is perceived.
This model influences the second and third objective described above, so that
the target for the generative system is adjusted as the player is observed playing.

2 Background

2.1 Procedural Content Generation

Procedural content generation is an active field that focuses on generating con-
tent for games through AI methods [9]. There has already been some research in
generating content for some puzzle games, but without keeping in account the
learning aspect [4]. Some examples include: level generation for the Cut the Rope
(ZeptoLab, 2010) puzzle game [17], generation of Sokoban levels [11], and gener-
ation of narrative puzzles for adventure games [7]. Moreover, the type of adap-
tive content generation that this paper describes can be seen as an instance of
the experience-driven procedural content generation framework (EDPCG) [19],
where the game adaptation mechanism generates puzzles with particular ele-
ments and challenges in response to the player’s actions.

1 https://teachinglondoncomputing.org/puzzles/
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Fig. 1: An example of how the puzzle is presented to the player. See Figure 2 for
the solution to this puzzle.

2.2 Computational thinking

Computational thinking has been defined as “a universally applicable attitude
and skill set everyone, not just computer scientists, would be eager to learn and
use” [18]. That can be seen as a very vague definition, and there is still much
debate over a more precise definition of what computational thinking is, and
what are its components.

Brennan and Resnick developed a definition of computational thinking that
involves three key dimensions: “computational concepts(the concepts designers
employ as they program), computational practices(the practices designers de-
velop as they program), and computational perspectives(the perspectives design-
ers form about the world around them and about themselves)”[2]. The computa-
tional concepts they identify are: sequences, loops, parallelism, events, condition-
als, operators, and data. Computational practices are defined as being incremen-
tal and iterative, testing and debugging, reusing and remixing, and abstracting
and modularizing.

In this paper, our system mostly focuses on sequences concepts and on being
incremental and iterative (since our system generates more and more complex
problems), and testing and debugging (since the game allows the pupils to plan
their solutions and then see how it works, debug it, and improve on it).

2.3 Evolutionary computation

To generate the puzzles we use an evolutionary algorithm, this is a family of algo-
rithms for global optimisation inspired by biological evolution. These algorithms
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can create highly optimised solutions for a wide variety of problems and more-
over are able to create not just one solution but a wide range of different, but
similarly optimised ones. In particular, we use a Multi-Objective Optimisation
(MOO) approach: this is defined as the process of simultaneously optimising mul-
tiple objective functions. In most multi-objective optimisation problems, there is
no single solution that simultaneously optimises every objective. In this case, the
objective functions are said to be partially conflicting, and there exists, a num-
ber (possibly infinite) of Pareto optimal solutions. To understand what makes a
solution better than another the concept of Pareto dominance is introduced: this
is a binary relation between two solutions where one solution is Pareto dominant
with respect to another solution if, for all objectives, it improves on the other
solution.

Many search/optimisation problems have not only one or several numerical
objectives, but also a number of constraints – binary conditions that need to be
satisfied for a solution to be valid. A number of constraint-handling techniques
have been developed to deal with such cases within evolutionary algorithms. The
Feasible/Infeasible 2-Population method (FI-2POP) [12] is a constrained evolu-
tionary algorithm that maintains two populations evolving in parallel, where
feasible solutions are selected and bred to improve their objective function val-
ues, while infeasible solutions are selected and bred to reduce their constraint
violations. In each generation, individuals are tested for constraint violations; if
they present at least one violation they are moved to the ’Infeasible’population,
otherwise they are moved to the ’Feasible’ population. An interesting feature of
this algorithm is that the infeasible population influences, and sometimes dom-
inates, the genetic material of the optimal solution. Since the infeasible popu-
lation is not evaluated by the objective function, it does not become fixed in a
sub-optimal solution, but rather is free to explore boundary regions, where an
optimum solution is most likely to be found.

When dealing with constrained optimisation problems, the approach is usu-
ally to introduce penalty functions to act for the constraints. Such an approach
favours feasible solutions over the infeasible ones, potentially removing infea-
sible individuals that may lead to an optimal solution, and finding solutions
that can be considered local optimum. There have been many examples of con-
strained multi-objective optimisation algorithms [14, 10, 6, 3]. In this paper we
use an algorithm called Non-dominated Sorting Feasible-Infeasible 2 Populations
(NSFI-2POP) [16, 15], which combines the benefits of maintaining an infeasible
population, free to explore the solution space without being dominated by the
objective fitness function(s), and finding the Pareto optimal solution for multiple
objectives. This algorithm is essentially a combination of FI-2POP and NSGA-II
[5].
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Fig. 2: The solution to the puzzle in Figure 1.

3 The system

In this section we discuss the details of the implementation of the system, in
particular describing how does the game work, how does the puzzle generation
work, and how we model the current solving ability of the player.

3.1 The game

We have chosen to recreate a mini-game from Professor Layton and the Unwound
future [Level-5, 2008]); the game’s goal is for a toy car to reach the goal square,
while collecting all the flags on its path (see Figure 1). Looking at Figure 1, the
car sprite indicates that the starting direction is to the right, the red tile is the
goal that the car has to reach, and the flags have to be collected on the way. On
the right the direction tiles that the player can drag-and-drop on the game map
can be found. Note that direction tiles can only be placed on empty spaces. On
the bottom right the play button starts the simulation, so that the player can
observe if plan works as expected.

The player interacts with the game by positioning the direction tiles within
the game grid, and then by pressing the ”play” button the player is able to
observe the plan being executed. A small modification to the original game is
that, as the car walks over the direction-change tiles, these are picked up, this can
create more complex puzzles when the sequence is long enough (see Figure 12).
Note that the player has no way to interact with the game once the simulation
has started (apart from aborting it), which means that the player has to create
and “test” the plan in its head before being able to see the actual results.
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Fig. 3: A visualization of what we consider a loop in the context of this game

As discussed in section 2.2, our system mostly focuses on sequences concepts,
on being incremental and iterative, and on testing and debugging.

While creating lengthy sequences is the most obvious challenge, puzzles can
also include various other features, such as “loops” and recurring paths. By loops
we don’t mean in the programming sense, but when the player has to make the
car follow a path that makes it go through all directions before coming back to
the starting one (e.g [left, up, right, down, left], also see Figure 3).

3.2 Generation of puzzle from solution

The evolutionary algorithm generates a set of directions that represent the so-
lution of the puzzle. That is an abstraction, and not a complete level as can be
seen in the previous figures. To generate the final level the set is passed to a
semi-stochastic algorithm which is described in Figure 4.

As can be observed in Figure 4, the algorithm has a stochastic component,
meaning that from the same solution different boards can be created (see Figure
5).

3.3 GA

This section describes details of the evolutionary system where domain-specific
choices had to be made that deviate from the more general NSFI-2POP structure
defined in section 2.3.
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L : l i s t o f moves
i n c r e a s e : i n c r e a s e in chance o f changing d i r e c t i o n
P = empty l i s t to hold the path

carCoord inates = {0 ,0}
f o r each move m in L :

changeProbab i l i ty = 0
whi l e random number > changeProbab i l i ty :

carCoordinate = new p o s i t i o n moving by m
add carCoordinate to P
changeProbab i l i ty += i n c r e a s e

Add an o b j e c t i v e in the segment the car has t r ave r s ed
spawn car at {0 ,0}
spawn goa l at l a s t p o s i t i o n in P
fo r each t i l e t not in P:

i f random number > 0 .3
spawn o b s t a c l e in t

Fig. 4: Level generation algorithm: this transforms the evolved sequence of moves
into the actual visual level

Genome representation The evolutionary genome consists of a number of
values that represent the moves necessary to solve the puzzle. These values are
left, right, up, down, and correspond to the tiles that the player has to place on
the board (see Figure 2). The size of the genome is variable, since we want to
be able to generate puzzles with different and possibly quite long sequences.

Constraints We have two constraints in this problem: we do not want to cre-
ate solutions which contains opposite directions one after the other (e.g [..., left,
right,...]) nor solution that contain the same direction more than once conse-

Fig. 5: Three examples of puzzles that are represented by the same solution
{U,R,D,L, U, L}, showing how the system can express the same problem in a
number of different ways
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quently (e.g [..., left, left,...]). The opposite case is the most crucial, since it
would represent an impossible solution (see Figure 6).

Fig. 6: Example of a situation we would like to avoid and use as a constraint to
the evolution

The second case, where we have the same direction more than once conse-
quently, is less critical, but it amounts to the same solution if the two duplicates
where one:

[up, left, left, up, right] ≡ [up, left, up, right]

As such the feasability equation we define is:

Feasibility = −
n−1∑
i=0

(Opposite(i, i + 1) + Same(i, i + 1))

where n is the lenght of the genome.
The two funcions in the above equation are both Boolean ones, returning ei-

ther 0 or 1 depending if the constraint is satisfied or not. The Feasibility function
can return a number between [0,−2(n− 1)], where 0 means that the individual
satisfies all constraints and can consequently be transferred from the infeasible
population to the feasible one.

Fitness objectives The objectives used to evolve the individuals in the fea-
sible population are two: the length of the sequence, and the amount of chal-
lenges (loops, see Section 3.1). These objectives do not follow a maximization
or minimization problem (e.g. we do not want to evolve towards infinitely large
sequences, since it does not make sense to present the player such puzzles). In-
stead both objectives have a target number, which is variable as time progresses
and the player solves puzzles.

These numerical targets are controlled by the player model (see section 3.4),
and represent the current difficulty calculated as the one fitting the player’s
current skill level.
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Selection operator The feasible population (i.e. that running NSGA-II) utilises
a binary tournament selection operator: two random individuals are chosen from
the population and compared. The individual that dominates the pair is selected
as a parent for a crossover operator, this operator is executed twice to obtain
the two parents required by a crossover operator. In the event neither individual
dominates the pair, a parent is chosen randomly among the pair.The infeasible
population uses a roulette-wheel selection operator: the selection is a stochastic
process where individuals have a probability of becoming parents for the next
generation proportional to their fitness. In this way individuals with higher fit-
ness are more likely to be selected while individuals with lower fitness have a
lesser chance, however they may have genetic material that could prove useful
to future generations and are therefore preserved.

Fig. 7: A graphical representation of the crossover process: the two parents are
recombined by cutting them at a common index to create two new offspring

Crossover operator Both populations adopt a simple single point crossover
operator: meaning that a cutting point is chosen, both genomes are split at that
index and new individuals are created by recombining the resulting sequences
(see Figure 7).

One adjustment to the canonical single point crossover is necessary, given
that in our case the genome length is variable. Quite simply the cutting point is
chosen as a number between [0, smallestN), where smallestN is the length of the
smallest of the selected genomes. This ensures that the cut always happens at an
index that does exist for both genomes. As it can be noticed also in Figure 8, this
operator creates two new individuals that have the same length of the parents.
Some more complex crossover operators could create more variation in length
sequence; in this first study we decided to use a very commonly used one, since
experimentally it doesn’t seem to create an issue in how evolution proceeds.

Mutation operator The mutation operator gives each gene a probability 1/l,
where l is the genome length, to mutate. This ensures that on average only
one gene will mutate but allows for more than one or no mutation to occur.
The mutation itself applies one of these operations to the gene g: g changes to
represent another direction, g is removed from the genome, a new gene g′ (with
a randomly chosen direction) is added to the genome after g.
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Fig. 8: A representation of the three mutation operators used by our system:
the first randomly changes the gene n (in the example from Left to Right), the
second removes gene n, and the third inserts a new gene after gene n. Note how
the latter two operators change the size of the individual.

Implementation details Other implementation details used to obtain the
results discussed later in the paper are here summarised. Our system uses an
elitist strategy, meaning that a specified number of the best individuals from
the current population is allowed to carry on to the next one without being
altered.

The parameters used are:

– Population size: 500
– Generation number: 1000
– Elitist factor: 10%
– Mutation rate: 1/n for each gene, where n is the genome length

We do not present an analysis of the running time of the algorithm but, with
these parameters, we obtain a solution in ∼ 10 seconds.

3.4 Player model

As mentioned already in section 3.4, player modeling can be split in two large
families: model-based (top-down) and model-free (bottom-up) [19]. Our ap-
proach uses a model-based approach, meaning that we define a model and use
the collected player data to determine the state of the player. Since the objec-
tive is to control the difficulty of the generated puzzles, the represented state is
related to the player’s ability to solve the previous puzzles.

For each puzzle we collect some information about the player, these are:

Info(pn) = {tries, sequenceLength, loops}

where pn is the n-th puzzle.
Based on the information collected from the gameplay, the target length and

target loops of the evolutionary system (as described in section 3.3) are adjusted
so that:
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(a) (b) (c) (d) (e)

Fig. 9: Example of level progression as can be experienced by the player, starting
with a target of {3, 0} (a) and ending at {11, 2} (e)

– The sequence target length is increased by 2 if the player solved the last
puzzle with less than three tries.

– The target loops are increased by 1 if: 1) targetLength > 5 ∗ targetLoops+
3 and 2) the player solved the last puzzle with less than three tries. The
motivation behind the first part of the if comes from our definition of a loop
(see section 3.1) which requires a specific sequence of five directions to be
formed.

4 Results and discussion

This section provides and discusses generated puzzles for various targets, and
provides an exploratory evaluation of the dynamic difficulty of the puzzles. This
last one is provided by a pilot user study involving three participants.

4.1 Targeted evolution

Figure 9 shows five generated puzzles of increasing difficulty. As it can be ob-
served, the system is able to produce quite different maps, and as the difficulty
increases we see a transition from linear solutions to more complex and sprawling
ones that do require deeper thought from the player.

We also would like to discuss Figure 12, this shows a puzzle evolved to have a
quite high complexity. The puzzle appears quite complex even with the solution
being displayed, it requires a clever use of the tiles, sometimes in quite un-
intuitive ways, and requires the player to not only think about where the tiles
are placed, but which tiles would disappear once the car travels on them. The
participants on the pilot study were asked after the test to try to solve this,
and all three had to give up, citing that it was a much more complex task than
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(a) (b)

Fig. 10: Visualization of the time the participants took in completing the 5 puz-
zles (in seconds) (a), and amount of tries needed (b)

the ones they tried before. That said, this puzzle is also an example that, while
the system creates a solvable puzzle with this type of large solutions, there is
room for improvement. In fact, you can observe around the centre of the map
that there are two ”Down” tiles that appear one after the other in the sequence,
which makes one of them superfluous. Possibly a post-processing task could be
added to make sure such ”extra” tiles would be removed from the final puzzle.

4.2 Pilot user study

We developed a pilot user study to lightly assess the functioning of the system.
The experiment consisted in the participants playing through five puzzles, and
of a short survey afterwards. There were 3 participants, with average age 23.6,
of which 2 males and 1 female. These were all university students (which can
be assumed to have some knowledge of computational thinking), so it’s not a
sample representative of our target audience, yet they could still give us some
initial feedback, especially on playability. During gameplay we collected the time
and amount of tries needed to complete the puzzles. The survey consisted in some
basic demographic questions, and two specific ones about the experiment itself:

– Did you feel a sense of progression?
– Were you familiar with this type of puzzle?

Both questions were answerable using a 5-point Likert scale.
As can be observed from Figure 10a, there seems to be a common pattern

with the time to complete the puzzles decreasing after the first puzzle and then
increasing towards the fourth and fifth. We hypothesise that the initial decrease
in time is due to the participants getting acquainted to the game/interface, and
the following increase due to the increasing difficulty. Looking at Figure 10b we
can observe a similar pattern in participants 2 and 3.

All the participants expressed with a relatively large amount of confidence
that they perceived an increase in difficulty 11. Participant 1 was the only one
that was quite familiar with this type of puzzle, which also is reflected into their
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performance: always solving the puzzle in one try, and very fast solving time
also for the first puzzles. That said, we can observe that their solving time also
looked like it was increasing towards puzzle 5.

Fig. 11: Participants’ answers to the survey

Fig. 12: Example of a generated puzzle with a very large target sequence length
(40)

5 Conclusions

This paper presents a novel use of PCG for the generation of puzzles to help
pupils learn in a more adaptive ways about some computational thinking con-
cepts, especially sequences. The presented system is able to create a vast variety
of puzzles of different difficulties, and can present the player with a progression
from simple puzzles to very complex ones.

Of course, this work is still in its infancy, much could be expanded and
improved on. In particular the current player modelling is quite simplistic, a more
bottom-up approach to creating the model (based on collected player data) would
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likely lead to more flexible and personalised puzzle generation. We also present a
very small user study, which shows some promising results, but that is not nearly
enough to reach statistically sound conclusions. Moreover the participants have
not been the target audience (young pupils). The next step of this research would
be to conduct a more in-depth user-study with our target audience.

That said, we do believe there is a lot of potential in this and similar systems
since they would solve one of the main problems educators encounter with using
gamification tools for teaching/learning: the content is almost always static and
limited! This use of PCG would allow the educator to use the tool for longer and
possibly even ask it to generate specific content, without requiring the educator
to have either design or programming skills (which is usually the case). Another
thing we want to highlight, is that our system can generate a variety of different
looking levels, even if they have the same solution, this might be interesting from
an educational point of view, to see how groups of students might be able to
figure out collectively that they can abstract problems that might look different
to the same one.

In conclusion, we presented a system for generating levels of a puzzle game
with adaptive difficulty. The difficulty curve is itself controlled by the player
performance, and the game was designed with the objective to be able to teach
some computational thinking concepts. The system is powered by a constrained
multi-objective optimisation evolutionary method.
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