
Balanced Map Generation using Genetic
Algorithms in the Siphon Board-game

Jonas Juhl Nielsen and Marco Scirea

Maersk Mc-Kinney Moller Institute, University of Southern Denmark,
msc@mmmi.sdu.dk

Abstract. This paper describes an evolutionary system for the genera-
tion of balance maps for board games. The system is designed to work
with the original game Siphon, but works as a proof of concept for the us-
age of such systems to create maps for other board games as well. Four
heuristics and a constraint, developed in collaboration with the game
designer, are used to evaluate the generated boards, by analyzing prop-
erties such as: symmetry, distribution of resources, and points of interest.
We show how the system is able to create diverse maps that are able to
display balanced qualities.

1 Introduction

Board games are increasing in popularity, and successfully publishing a board
game is becoming increasingly challenging [1]. Hence it is important to have a
solid game design, so that this specific game will stand out of the other thousands
that are developed. An important game design element in board games is bal-
ance. If a game is completely unbalanced, it gives an almost guaranteed victory
for the same player every time, which makes it unpleasant to play. In a balanced
game the initial player situation (e.g. the starting country in Risk) should not
ensure victory or defeat. As an example of an advantage a player might have,
consider having the first move, a balanced game should allow the player skills
(and sometimes luck) to determine the progression of the game regardless of such
advantages. This problem relates to all board games and is consequently an area
that needs focus. Board games are becoming more and more advanced, which
makes it complex to ensure balance. The incomplete information, randomness,
large search space and branching factor makes it almost certain that the designer
will miss substantial balance elements. When introducing procedural elements
to the game – as the multiple scenarios for victory and dynamic map of Betrayal
at House on the Hill – it becomes even harder to control the scope of all possible
actions that the players can take. Artificial intelligence (AI) techniques can be
employed to explore the game space and provide evidence that a certain rule in
the game must be removed or revised. To acquire the balanced experience, play
testing is essential. After the AI has generated various setups for the game, they
can be tested by human players to evaluate if it still feels fun to play. [2]



This paper highlights the exploration of how to make a board game balanced
using artificial intelligence techniques, specifically with procedural content gen-
eration (PCG) applied to board generation using a genetic algorithm (GA). This
will be applied on a self-developed board game called Siphon. This study is based
on a limited version of Siphon and concern itself with balancing game maps. In
the future the project will consider other game play elements that also affect
game balance. The simplified version of the game will be described in section
3. The genetic algorithm uses several heuristics in the fitness functions that
describe different desirable features to create interesting and balanced maps.

2 Background

Video Games drags our attention and makes us able to sit in front of the screen
for hours and hours, just to progress a virtual character in games like World of
Warcraft. Some board games and card games can inspire our strategic minds,
to find optimized ways to beat friends and family in our most favorite games.
Sometimes we are killing the greater evil together to survive in the darkness.
What is it with all these games that drags our attention? A part of the answer
can be simplified to “A great game design”. [3]

This project introduces the game design element “balance”, with the focus
at board games. To accomplish balance in board games, it is important first to
locate the areas, which can be unbalanced and then figure out a plan to make
it balanced and keep the fun in playing the game. By introducing AI in game
design, it provides the opportunity to explore the game space much quicker than
a human being would ever be able to do. They can be used to discover unbalanced
strategies or even rules that are not covered in the rule-book.

2.1 Designing balance

Game Design is a huge area of study, which is about figuring the tools of play, the
rules, the story plot and line, the possible strategies, etc. As this project focuses
at the balance aspect of game design, we will look at internal, external and
positional balance, where some good balanced games will be used as examples,
to understand what a good design is.[4]

One of the primary concerns of a game designer is to generate a game with
long replay ability which is caused by e.g. varied experiences and removing un-
fairness. Internal balance has the focus of eliminating false decisions and regulat-
ing dominant strategies. Eliminating false decisions means that every action that
has been chosen can lead to a high scoring weight when combined with other
actions, which means that they are all valid for the chosen strategy. This means
that no choices are considered as a false decision. If a game implements false
decision making, the experienced players will have a huge advantage because of
his/her knowledge of the game and not the ability of outsmarting the other. The
board game Stratego uses internal balance, which introduces the false decision
making. It uses two frameworks that are made to equalize the output of different



game choices. Specifically, Stratego uses the intransitive relationship framework
which means that there is always a counter (as also in Rock-Paper-Scissors)
Stratego uses ranks to determine who beats who. The higher ranks beat the
lower ranks with one exception: The highest rank is beaten by the lowest rank.

Another framework is the transitive relationship, which uses a cost-benefit
curve to compare objects. If the benefit is higher than the cost, the object will
be categorized as overpowered and if it is lower as under-powered. An example
of a game that uses this, is Magic the Gathering. It is a card game, where each
card has a cost to use and has an effect when it is used. Ticket to Ride is also
an example of a game that is very popular and uses the transitive framework.
Players are rewarded for selecting and completing tickets. The harder the ticket
is, the more rewarding it is to complete.

Another kind of balancing is the external balance. This is the primary focus
of this project, since it encompasses the designers’ choices of how the game is
built (e.g. being the starting player or the positions of resources gives a player
huge advantage). Symmetry in games are often appealing, since humans feel
comfortable by seeking patterns. It is one of the easiest ways of making balance,
since it gives the same position and options for each player. The reason not
to make everything symmetric is that it can appear less interesting and subtle
imbalance can easily be overseen. An example of a mirror symmetric game is
Chess. The Fritz database, which contains more than eight million chess games,
shows that the average score is 0.55 points, where 1 is the white winning, 0 is
loosing and 0.5 is a draw. This shows that the starting player, using the white
pieces, has an advantage in chess. Asymmetrical game play often provides more
interesting scenarios, but it is harder to make balanced. Also, it might be harder
for new players to discover a good action in a given situation, which will widen
the skill level between newcomers and experienced players. The art is finding a
combination between the symmetry and asymmetry to have an interesting but
clear design for all kind of players and still have a balanced game.

2.2 Using AI for balance

A previous study [5] uses AI-based play testing on the board game Ticket to
Ride, to detect loop holes and unbalanced strategies. The AIs plays the game
using different evolutionary algorithms and evaluating each play through. By
playing the game thousands of times with different maps, some strategies will
be evaluated high. They might as well discover failure cases where the agents
found game states that are not covered in the rules. These are the areas in the
game design that needs focus. A high evaluation might be close to an optimal
strategy, which might be overpowered. Evolutionary algorithm is the super-set
of the genetic algorithm, which is used for Siphon (see section 4).

The popular board game Settlers of Catan has multiple options of setting
up the game board when playing. One is randomization which can provide very



Fig. 1. Example of tiles and heroes cards in Siphon. Each tile can have up to 6 runes
which can be used by heroes standing on them to activate abilities.

unbalanced boards for some players. Another way is following the setup that is
displayed in the rule-book.[6]A third way is using “BetterSettlers”.1

Civilization is a famous video game, which uses random map generation every
time you play a new custom map. A study [7] describes how Civilization uses
a real world map to discover types of environment by color, to gain the types
of resources. After this the information from the map, (latitude and longitude)
are used to generate the maps. At last genetic algorithms calculates the initial
position, where the fitness function takes fairness and exploration into account.

Another study [8] uses a GA for generating new board games, by using simple
and existing ones: Checkers, Tic-Tac-Toe and Reversi. Finding the game elements
that they all have in common, creates the search-space for the algorithm and
makes it able to generate 144 new games. Adding some nontraditional game
elements, increases the search-space to 5616 games. After generating the games,
they are played hundreds of times with a simulator. The games are then evaluated
with the fitness function based on diversity and balance. By doing this, new and
balanced board games are created, where the rules are defined by the AI. This
is an example of how powerful GAs can be.

3 Game Design of Siphon

In this report, a simplified version of a self-developed board game called Siphon
are used to demonstrate how GAs can be used to balance a board game.

Siphon is a competitive two-player game. Each player has 5 heroes, which
they have picked in turns from a hero pool. The heroes are summoned in an
arena which is a board consisting of 37 hexagon tiles, placed as a rectangle. A
tile has up to four different rune types and can have up to six of these in any

1 BetterSettlers (www.bettersettlers.com), uses an algorithm that provides the fairest
distribution of starting setup



Fig. 2. The hero cards can rotate over a tile, and need to be align the correct runes to
activate abilities.

combination. The runes count as resources. The system creates balanced boards
by deciding where to place these runes. See Figure 1.

A hero has various abilities and has two split runes on each side of the card.
These are the same types that can appear on the tiles. To cast abilities, it is
a requirement that the runes appearing on the abilities are met. See Figure 1.
This means that the split runes displayed on the hero cards, must combine a full
rune on the board tiles, by rotating the hero card. See the rotating hero card on
Figure 2. Since the heroes can both move around on the tiles and rotate, and
each hero are different, the branching factor is huge since there is many different
actions available. It would be very difficult for a designer to find a board that
is balanced just by trial-and-error, and the odds of finding a balanced board
are minimal. As such the game present a good framework for the usage of AI
techniques for balancing.

4 Methods

The algorithm that we employed to balance Siphon is a genetic algorithm (GA),
which is a subset of evolutionary algorithms. [9] GAs are inspired by evolu-
tion theory, which is the process of natural selection and survival of the fittest.
These algorithms are used to solve problems where“brute force” algorithms
would take too long. GAs generate solutions to optimize and search for problems
that uses bio-inspired operators. These operators are selection , mutation and
crossover .

Before going in depth with the before-mentioned operators, Darwinian evo-
lution theory will be explained[10]. He uses three elements that describes the
natural selection that occurs in our nature.

I.Heredity - The children of an evolution need to receive the properties of
their parents. If a creature reproduces, it needs to pass down its traits to the
next generation.



II.Variation - The traits that are present in the population need to vary, so
that all creatures in it reproduce a variety of traits. If this was not the case, all
children will possess the same genome as their ancestors.

III.Selection - The fittest creatures of a population need to be able to
pass down their genes, so that the stronger survives. This is the evolution and is
commonly referred as “survival of the fittest”. A fit creature does not necessarily
mean “physically fit” but is based on its likelihood of being good at a specific
task. The selection operator uses this principle.

In GAs the creatures of a population are often referred to as “individuals”,
where the traits of the creature are the “genes”. In practice, the individuals
are the solutions we want to assess and the genes are the characteristics that
define a solution. From the Darwinian principle of variation populations are
usually initialized randomly. After creation, each individual of the population
is evaluated by using an evaluation (fitness) function. The fitness values are
then used by the selection operator . The operator is used to determine which
individuals are going to be chosen to become the parents for the next generation.
In this implementation all individuals of a population have been evaluated the
most fit individuals are placed in a mating pool. For the reproduction step, a
simple one-point crossover operator is used. This crossover operator consists
of: i) choosing two random individuals from the mating pool (parents), ii) picking
a random index to split the genomes, iii) creating two new individuals (offspring)
by combining the first part of the genome of one parent with the second part
of the other (and vice-versa). After the crossover step, it is usually necessary to
use a mutation operator . This operator is used to introduce random changes
in the genes of the offspring, that would otherwise have only a combination of
the genes of its parents. The mutation operator can be seen as a random local
search mechanism, as it should never result in very big variations in the genome.
As GAs contain many stochastic elements to the optimization process, there is a
chance for evolution to get stuck in a local optimum, mutation used to limit this
shortcoming of the algorithm family. An example of when this problem might
appear occurs when the starting population does not have the genes that are
required to get to the optimal fitness score. With mutation, it is possible to
change a gene that is not a part of the ancestors and access the genes that allow
for the possibility of acquiring the optimal fitness score.

4.1 Fitness function

When creating a population, all individuals have to be evaluated in order to
determine the “fitness” of the solutions they represent. Fitness functions are
usually very domain-dependent and are in fact the driving force of the evolu-
tionary process. z These heuristics have been defined in collaboration with the
designers of the game (one of which is an author of this paper). One constraint
and four heuristics have been defined. The constraint has to be fulfilled before an
individual is evaluated on the other heuristics. In practice, that means that all
generated boards have to satisfy the constraint, but might satisfy in different



amounts (possibly not optimally) the other heuristics. The fitness scoring are as
follows:

f(sol) =


Constr(sol) if Constr(sol) < 1

w1Even(sol) + w2Symm(sol)+

w3Rune(sol) + w4Mono(sol) if Constr(sol) = 1

The possible fitness values are between [0, 2]. While the constraint has not
been met this value is restricted between [0, 1], effectively forcing evolution to
first create individuals that satisfy constraints. Each of the other four heuristics
is assigned a weight. A heuristic with a higher weight will be prioritized over the
others. In Siphon, an individual is a complete board setup and the genes are the
tiles.

The constraint heuristic (Constr) is based on the sums for each type of
rune that is allocated on the hero cards. The percentage of these sums are then
calculated from the total amount of runes on the hero cards. An individual (a
board setup) is then evaluated with a higher score the closer it gets to these
percentages by placing the runes on the tiles.

The even-distribution heuristic (Even) is evaluating how evenly dis-
tributed runes are all over the board (e.g. a board with x tiles and x runes of a
type has 1 of these runes on each tile).

The symmetry heuristic (Symm) is based on symmetry, as that is often
a quality that is desirable for balance. The designer felt it was too static to
aim for complete mirror symmetry (which is also a trivial problem that does
not require evolution to solve), so it was decided that a potentially imperfect
diagonal symmetry was more desirable. With the weight parameter, it is possible
to adjust the amount of symmetry, since the GA usually does not get a perfect
score in this metric.

The rune-count heuristic (Rune) is evaluating that the number of runes
on the tiles are below four, with the exception of the the center tiles, which have
six. This heuristic is used to create dominant tiles, which generates high risk -
high reward areas on the board.

The mono-rune heuristic (Mono) is aiming toward having tiles with
the same rune type. This heuristic’s purpose is to create interesting territo-
ries (biomes) which might high rewards, so that the players have an incentive to
want to capture it, which generates more action in the game.

Considering all the different heuristics that are part of the fitness function,
individuals might never get to a perfect score, since satisfying a condition might
break another. Nonetheless, the GA is able to create boards that have a close
to perfect (if not optimal) score. These individuals are still valid candidates for
a balanced board, and can be play tested by human players and compared to
evaluate, which one that should be the chosen one. This might require many
candidates, but the GA are able to decrease the number of candidates signif-
icantly. Figure 3 shows a board generated by the GA, with a fitness score of



1.92. This can be compared with other generated boards and get play tested by
human players.

Fig. 3. An example of a generated map with fitness quite close to the optimal value
(1.92).

5 Analysis

There are many parameters of the GA that can be adjusted. These include:
the population size, the mutation rate, heuristic weights, and heuristic-specific
parameters. By finding the right adjustment, it might be possible to get closer to
optimal solutions, but finding these can be difficult and require a large amount
of testing. In this section, the results from testing the GA used in Siphon are
displayed and described.

5.1 Effect of population size

Figure 4 and 4 display the best fitness and the average fitness in a population
over generations for two data sets. The results will be used to analyze what
to optimize and to see after how many generations the GA stops finding new
solutions. The only parameter that will be changed is the population size, which
are displayed on the graphs. The static parameters are set to: Mutation Rate:
0.2, Heuristic Weights (w1, w2, w3, w4): 0.25, 0.25, 0.25, 0.25

The best fitness curve are the same for both data sets and reach a plateau
around 7-8000 generations. The two average fitness from the data sets are instead
quite different. The data set with the population parameter set to 400, rarely
satisfies the constraints and therefore has an average fitness lower than 1 (the
score indicating the constraint satisfaction). The other data-set rises after there



Fig. 4. Best and average fitness in the setup with 200 and 400 individuals in the
population

Fig. 5. Amount of individuals that satisfy the constraint as evolution progresses.

are enough individuals that satisfy the constraint in the mating pool. That is
why there is a delay of the average fitness.

Figure 5 shows the amount of individuals in a population which satisfy the
constraint over generations. Three data sets are used with same static parameters
previously defined. The population parameter are set to 100, 200 and 400 for
the data sets. It appears that for this problem a relatively low population size
(around 150) makes it easier for the GA to satisfy the constraint (see Table 1).
When the mating pool starts having individuals which satisfy the constraint, it
will be move likely that following generations will as well.

5.2 Individual heuristic effect

A population size of 150 will be a static parameter for the next data set. As
previously tested, the fitness score rarely gets above 1, 8. This could be caused
by the heuristics working against each other, or an optimal solution might not
exist. Table 2 compares the maximum fitness scores found by running evolution
when removing each heuristic one at a time. The ones that are still active are
assigned identical weights.



Table 1. Population Size Effect

Population Size Fitness score

100 1.72

150 1.755

200 1.75

400 1.655

800 1.58

Table 2. Heuristic Effect

Parameters Values

Population Size 150
Mutation 0.2
Even-Distribution 20
Symmetry 10
Rune-count 40
Mono-rune 30

By removing single heuristics one by one and evaluating the scores we wanted
to investigate which heuristic are most difficult to satisfy. As the table shows,
the symmetry heuristic are the most difficult, since the fitness function evaluates
the score highest when it is removed. With these results the designer can con-
sider lowering the weight of the more difficult heuristics or readjust the heuristic
algorithm.

6 Conclusion

The purpose of this project was to explore the balancing of board games using
a genetic algorithm. A simplified version of the self-developed game Siphon was
used as a case-study. It presents a map that has a big impact on how the game
plays out and consequently that is where the algorithm has been applied. A
genetic algorithm uses a fitness function to evaluate how “good” a board is.
The performance is dependent on the heuristics chosen, and as such these were
developed together with the designer of Siphon. The heuristics were defined by
analyzing and trying different strategies that seems to make an interesting game.

To provide a proper evaluation of the system, we plan to conduct an ex-
periment where players will be asked to play generated boards, evaluate them,
and compare them with human-designed ones. One of the advantages of using
GAs for these generative tasks is that, given the stochastic elements of the tech-
nique, it allows for the generation of diverse maps, which still fulfill (to some
degree) the requirements set by the heuristics. The heuristics do not necessarily
need to be perfectly satisfied in order to make a balanced and interesting map.
Another possible improvement to the system would be to replace the heuristic
with a simulation: to evaluate if a map is balanced we can simulate a number
of games and analyze the results (e.g. how many times did player one win? How



long did the games last in average?). A possible candidate for the implementing
the player controller is Monte Carlo Tree Search, which is domain independent
(does not need heuristics). While this paper focuses on creating balanced maps,
it would be interesting in future work to reverse this concept to create very
unbalanced (unfair) maps. This could be used to create extra challenge for the
players, or as a game mechanic if you assume the players would be able to act
on the map layout. Since the algorithm is entirely based on the heuristics, they
can be modified to any needs. For example, as wars are rarely balanced, a use
case could be having the enemy part of the map as static, so that the system
could create optimal positioning of resources for the player/user. That said, we
believe that this system would be of more use in creating training simulations
than optimizing positions for real-world usage.

To conclude, this paper presents an exploration of the usage of GAs for the
generation of balanced board-game maps. The results, while preliminary, seem
to show potential for creating diverse and interesting maps.

References

1. s. Adkins, S.: The 2017-2022 global game-based learing market. Serious Play
Conference (2017)

2. Yannakakis, G.N., Togelius, J.: Artificial Intelligence and Games. Springer (2017)
3. Fullerton, T.: Game design workshop: a playcentric approach to creating innovative

games. CRC press (2008)
4. Harkey, A.: Balance. (2014)
5. de Mesentier Silva, F., Lee, S., Togelius, J., Nealen, A.: Ai-based playtesting of

contemporary board games. In: Proceedings of the 12th International Conference
on the Foundations of Digital Games, ACM (2017) 13

6. Teuber, K.: The settlers of catan - game rules and almanac (1995)
7. Barros, G.A., Togelius, J.: Balanced civilization map generation based on open

data. In: Evolutionary Computation (CEC), 2015 IEEE Congress on, IEEE (2015)
1482–1489

8. Hom, V., Marks, J.: Automatic design of balanced board games. In: Proceedings
of the AAAI Conference on Artificial Intelligence and Interactive Digital Enter-
tainment (AIIDE). (2007) 25–30

9. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge,
MA, USA (1998)

10. Shiffman, D.: The nature of code. Free Software Foundation (2012) Accessed
12/04/2018, http://natureofcode.com/book/chapter-9-the-evolution-of-code/.


